Cargando…
Revealing ferroelectric switching character using deep recurrent neural networks
The ability to manipulate domains underpins function in applications of ferroelectrics. While there have been demonstrations of controlled nanoscale manipulation of domain structures to drive emergent properties, such approaches lack an internal feedback loop required for automatic manipulation. Her...
Autores principales: | Agar, Joshua C., Naul, Brett, Pandya, Shishir, van der Walt, Stefan, Maher, Joshua, Ren, Yao, Chen, Long-Qing, Kalinin, Sergei V., Vasudevan, Rama K., Cao, Ye, Bloom, Joshua S., Martin, Lane W. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6805893/ https://www.ncbi.nlm.nih.gov/pubmed/31641122 http://dx.doi.org/10.1038/s41467-019-12750-0 |
Ejemplares similares
-
Autonomous scanning probe microscopy with hypothesis learning: Exploring the physics of domain switching in ferroelectric materials
por: Liu, Yongtao, et al.
Publicado: (2023) -
Non-conventional mechanism of ferroelectric fatigue via cation migration
por: Ievlev, Anton V., et al.
Publicado: (2019) -
High Velocity, Low‐Voltage Collective In‐Plane Switching in (100) BaTiO(3) Thin Films
por: Ræder, Trygve M., et al.
Publicado: (2022) -
Field enhancement of electronic conductance at ferroelectric domain walls
por: Vasudevan, Rama K., et al.
Publicado: (2017) -
Strain-induced growth instability and nanoscale surface patterning in perovskite thin films
por: Pandya, Shishir, et al.
Publicado: (2016)