Cargando…

Drug-induced PD-L1 expression and cell stress response in breast cancer cells can be balanced by drug combination

The impact of chemotherapy on tumor-immune system interaction can be either beneficial or harmful, which is represented by the immunogenic cell death (ICD) paradigm or overexpression of the immunosuppressive protein – programmed death ligand 1 (PD-L1). In this study we explore the impact of steroid...

Descripción completa

Detalles Bibliográficos
Autores principales: Gilad, Yosi, Eliaz, Yossi, Yu, Yang, Han, Sang Jun, O’Malley, Bert W., Lonard, David M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6805932/
https://www.ncbi.nlm.nih.gov/pubmed/31641154
http://dx.doi.org/10.1038/s41598-019-51537-7
Descripción
Sumario:The impact of chemotherapy on tumor-immune system interaction can be either beneficial or harmful, which is represented by the immunogenic cell death (ICD) paradigm or overexpression of the immunosuppressive protein – programmed death ligand 1 (PD-L1). In this study we explore the impact of steroid receptor coactivator inhibitor, other targeted anti-cancer compounds and traditional chemotherapeutic agents on the expression of PD-L1 in four breast cancer (BC) cell lines. Our results show that these agents induce PD-L1 expression, yet the magnitude of this induction varies substantially across the different compounds. In addition, we utilized the E0771 ER + BC cells as a model to examine in greater detail the relationship between pharmacological pressure, cell stress and the induction of PD-L1. Our results imply that drug induced PD-L1 expression occurs in the broader context of cell-stress, without conferring acquired drug-resistance. Furthermore, a balance between BC cytotoxicity, induction of cell-stress and the overexpression of PD-L1 can be achieved through the selection of appropriate combinations of anti-cancer compounds. Therefore, we propose that drug combination can be employed not only for increasing the direct kill of cancer cells, but also as a strategy to minimize the activation of immunosuppressive and cancer cell pro-survival program responses during drug treatment.