Cargando…
Deep convolutional neural network for reduction of contrast-enhanced region on CT images
This study aims to produce non-contrast computed tomography (CT) images using a deep convolutional neural network (CNN) for imaging. Twenty-nine patients were selected. CT images were acquired without and with a contrast enhancement medium. The transverse images were divided into 64 × 64 pixels. Thi...
Autores principales: | Sumida, Iori, Magome, Taiki, Kitamori, Hideki, Das, Indra J, Yamaguchi, Hajime, Kizaki, Hisao, Aboshi, Keiko, Yamashita, Kyohei, Yamada, Yuji, Seo, Yuji, Isohashi, Fumiaki, Ogawa, Kazuhiko |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6805976/ https://www.ncbi.nlm.nih.gov/pubmed/31125068 http://dx.doi.org/10.1093/jrr/rrz030 |
Ejemplares similares
-
Intensity‐modulated radiation therapy dose verification using fluence and portal imaging device
por: Sumida, Iori, et al.
Publicado: (2016) -
Organ-specific modulation complexity score for the evaluation of dose delivery
por: Sumida, Iori, et al.
Publicado: (2017) -
Evaluation of the radiobiological gamma index with motion interplay in tangential IMRT breast treatment
por: Sumida, Iori, et al.
Publicado: (2016) -
Robust plan optimization using edge-enhanced intensity for intrafraction organ deformation in prostate intensity-modulated radiation therapy
por: Sumida, Iori, et al.
Publicado: (2017) -
Three‐dimensional dose prediction based on two‐dimensional verification measurements for IMRT
por: Sumida, Iori, et al.
Publicado: (2014)