Cargando…
WEE1 inhibition enhances sensitivity to hypoxia/reoxygenation in HeLa cells
Hypoxia/reoxygenation (H/R) treatment reportedly induces DNA damage response (DDR), including DNA double-strand break (DSB) repair and G2 arrest, resulting in reduction of clonogenic survival. Because WEE1 plays a key role in the G2/M checkpoint along with CHK1/2, we investigated the effect of WEE1...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6805980/ https://www.ncbi.nlm.nih.gov/pubmed/31347653 http://dx.doi.org/10.1093/jrr/rrz045 |
Sumario: | Hypoxia/reoxygenation (H/R) treatment reportedly induces DNA damage response (DDR), including DNA double-strand break (DSB) repair and G2 arrest, resulting in reduction of clonogenic survival. Because WEE1 plays a key role in the G2/M checkpoint along with CHK1/2, we investigated the effect of WEE1 inhibition on H/R-induced DDR using HeLa cells. The H/R treatment combined with WEE1 inhibitor abrogated G2 arrest, subsequently leading to the cells entering the M phase, and finally resulting in mitotic catastrophe after prolonged mitosis. Colony-forming assay showed an enhanced decrease in the surviving fraction and the focus formation of BRCA1 was significantly reduced. We demonstrate for the first time that WEE1 inhibition enhances H/R-induced cell death accompanied by mitotic catastrophe and that the process may be mediated by homologous recombination. |
---|