Cargando…
Anti-Interference Deep Visual Identification Method for Fault Localization of Transformer Using a Winding Model
The idea of Ubiquitous Power Internet of Things (UPIoTs) accelerates the development of intelligent monitoring and diagnostic technologies. In this paper, a diagnostic method suitable for power equipment in an interference environment was proposed based on the deep Convolutional Neural Network (CNN)...
Autores principales: | Duan, Jiajun, He, Yigang, Wu, Xiaoxin, Zhang, Hui, Wu, Wenjie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6806057/ https://www.ncbi.nlm.nih.gov/pubmed/31557912 http://dx.doi.org/10.3390/s19194153 |
Ejemplares similares
-
Winding-to-ground fault location in power transformer windings using combination of discrete wavelet transform and back-propagation neural network
por: Chiradeja, Pathomthat, et al.
Publicado: (2022) -
Low-Pass Filtering Empirical Wavelet Transform Machine Learning Based Fault Diagnosis for Combined Fault of Wind Turbines
por: Xiao, Yancai, et al.
Publicado: (2021) -
Fault Detection of Wind Turbine Gearboxes Based on IBOA-ERF
por: Tang, Mingzhu, et al.
Publicado: (2022) -
A Probabilistic Bayesian Parallel Deep Learning Framework for Wind Turbine Bearing Fault Diagnosis
por: Meng, Liang, et al.
Publicado: (2022) -
Adaptive Observer Based Fault Tolerant Control for Sensor and Actuator Faults in Wind Turbines
por: Teng, Jing, et al.
Publicado: (2021)