Cargando…
An Unsupervised Framework for Online Spatiotemporal Detection of Activities of Daily Living by Hierarchical Activity Models
Automatic detection and analysis of human activities captured by various sensors (e.g., sequences of images captured by RGB camera) play an essential role in various research fields in order to understand the semantic content of a captured scene. The main focus of the earlier studies has been widely...
Autores principales: | Negin, Farhood, Brémond, François |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6806106/ https://www.ncbi.nlm.nih.gov/pubmed/31569564 http://dx.doi.org/10.3390/s19194237 |
Ejemplares similares
-
Online Recognition of Daily Activities by Color-Depth Sensing and Knowledge Models
por: Crispim-Junior, Carlos Fernando, et al.
Publicado: (2017) -
Using Ontologies for the Online Recognition of Activities of Daily Living†
por: Salguero, Alberto G., et al.
Publicado: (2018) -
Detection of activities of daily living impairment in Alzheimer’s disease and mild cognitive impairment using information and communication technology
por: Sacco, Guillaume, et al.
Publicado: (2012) -
Robust Muscle Activity Onset Detection Using an Unsupervised Electromyogram Learning Framework
por: Liu, Jie, et al.
Publicado: (2015) -
Unsupervised Hierarchical Classification Approach for Imprecise Data in the Breast Cancer Detection
por: Fordellone, Mario, et al.
Publicado: (2022)