Cargando…

Gold-Film-Thickness Dependent SPR Refractive Index and Temperature Sensing with Hetero-Core Optical Fiber Structure

A simple hetero-core optical fiber (MMF-NCF-MMF) surface plasmon resonance (SPR) sensing structure was proposed. The SPR spectral sensitivity, full width of half peak (FWHM), valley depth (VD), and figure of merit (FOM) were defined to evaluate the sensing performance comprehensively. The effect of...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Rui, Pu, Shengli, Li, Xinjie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6806139/
https://www.ncbi.nlm.nih.gov/pubmed/31597310
http://dx.doi.org/10.3390/s19194345
Descripción
Sumario:A simple hetero-core optical fiber (MMF-NCF-MMF) surface plasmon resonance (SPR) sensing structure was proposed. The SPR spectral sensitivity, full width of half peak (FWHM), valley depth (VD), and figure of merit (FOM) were defined to evaluate the sensing performance comprehensively. The effect of gold film thickness on the refractive index and temperature sensing performance was studied experimentally. The optimum gold film thickness was found. The maximum sensitivities for refractive index and temperature measurement were obtained to be 2933.25 nm/RIU and −0.91973 nm/°C, respectively. The experimental results are helpful to design the SPR structure with improved sensing performance. The proposed SPR sensing structure has the advantages of simple structure, easy implementation, and good robustness, which implies a broad application prospect.