Cargando…
Rapid Motion Segmentation of LiDAR Point Cloud Based on a Combination of Probabilistic and Evidential Approaches for Intelligent Vehicles
Point clouds from light detecting and ranging (LiDAR) sensors represent increasingly important information for environmental object detection and classification of automated and intelligent vehicles. Objects in the driving environment can be classified as either [Formula: see text] or [Formula: see...
Autores principales: | Jo, Kichun, Lee, Sumyeong, Kim, Chansoo, Sunwoo, Myoungho |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6806160/ https://www.ncbi.nlm.nih.gov/pubmed/31547620 http://dx.doi.org/10.3390/s19194116 |
Ejemplares similares
-
Semantic Point Cloud Mapping of LiDAR Based on Probabilistic Uncertainty Modeling for Autonomous Driving
por: Cho, Sungjin, et al.
Publicado: (2020) -
Cloud Update of Tiled Evidential Occupancy Grid Maps for the Multi-Vehicle Mapping
por: Jo, Kichun, et al.
Publicado: (2018) -
Improved LiDAR Probabilistic Localization for Autonomous Vehicles Using GNSS
por: de Miguel, Miguel Ángel, et al.
Publicado: (2020) -
Method for extraction of airborne LiDAR point cloud buildings based on segmentation
por: Liu, Maohua, et al.
Publicado: (2020) -
Simultaneous Localization and Map Change Update for the High Definition Map-Based Autonomous Driving Car
por: Jo, Kichun, et al.
Publicado: (2018)