Cargando…
Developing a Neural–Kalman Filtering Approach for Estimating Traffic Stream Density Using Probe Vehicle Data
This paper presents a novel model for estimating the number of vehicles along signalized approaches. The proposed estimation algorithm utilizes the adaptive Kalman filter (AKF) to produce reliable traffic vehicle count estimates, considering real-time estimates of the system noise characteristics. T...
Autores principales: | Aljamal, Mohammad A., Abdelghaffar, Hossam M., Rakha, Hesham A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6806210/ https://www.ncbi.nlm.nih.gov/pubmed/31591292 http://dx.doi.org/10.3390/s19194325 |
Ejemplares similares
-
Estimation of Traffic Stream Density Using Connected Vehicle Data: Linear and Nonlinear Filtering Approaches
por: Aljamal, Mohammad A., et al.
Publicado: (2020) -
A Novel Decentralized Game-Theoretic Adaptive Traffic Signal Controller: Large-Scale Testing
por: Abdelghaffar, Hossam M., et al.
Publicado: (2019) -
Adaptive Traffic Signal Control: Game-Theoretic Decentralized vs. Centralized Perimeter Control
por: Elouni, Maha, et al.
Publicado: (2021) -
Vehicle Localization Kalman Filtering for Traffic Light Advisor Application in Urban Scenarios
por: Vignarca, Daniele, et al.
Publicado: (2023) -
Vehicle State Estimation Combining Physics-Informed Neural Network and Unscented Kalman Filtering on Manifolds
por: Tan, Chenkai, et al.
Publicado: (2023)