Cargando…

Deep Learning-Based LOS and NLOS Identification in Wireless Body Area Networks

In this article, the usage of deep learning (DL) in ultra-wideband (UWB) Wireless Body Area Networks (WBANs) is presented. The developed approach, using channel impulse response, allows higher efficiency in identifying the direct visibility conditions between nodes in off-body communication with com...

Descripción completa

Detalles Bibliográficos
Autores principales: Cwalina, Krzysztof K., Rajchowski, Piotr, Blaszkiewicz, Olga, Olejniczak, Alicja, Sadowski, Jaroslaw
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6806233/
https://www.ncbi.nlm.nih.gov/pubmed/31569456
http://dx.doi.org/10.3390/s19194229
_version_ 1783461582363164672
author Cwalina, Krzysztof K.
Rajchowski, Piotr
Blaszkiewicz, Olga
Olejniczak, Alicja
Sadowski, Jaroslaw
author_facet Cwalina, Krzysztof K.
Rajchowski, Piotr
Blaszkiewicz, Olga
Olejniczak, Alicja
Sadowski, Jaroslaw
author_sort Cwalina, Krzysztof K.
collection PubMed
description In this article, the usage of deep learning (DL) in ultra-wideband (UWB) Wireless Body Area Networks (WBANs) is presented. The developed approach, using channel impulse response, allows higher efficiency in identifying the direct visibility conditions between nodes in off-body communication with comparison to the methods described in the literature. The effectiveness of the proposed deep feedforward neural network was checked on the basis of the measurement data for dynamic scenarios in an indoor environment. The obtained results clearly prove the validity of the proposed DL approach in the UWB WBANs and high (over 98.6% for most cases) efficiency for LOS and NLOS conditions classification.
format Online
Article
Text
id pubmed-6806233
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-68062332019-11-07 Deep Learning-Based LOS and NLOS Identification in Wireless Body Area Networks Cwalina, Krzysztof K. Rajchowski, Piotr Blaszkiewicz, Olga Olejniczak, Alicja Sadowski, Jaroslaw Sensors (Basel) Article In this article, the usage of deep learning (DL) in ultra-wideband (UWB) Wireless Body Area Networks (WBANs) is presented. The developed approach, using channel impulse response, allows higher efficiency in identifying the direct visibility conditions between nodes in off-body communication with comparison to the methods described in the literature. The effectiveness of the proposed deep feedforward neural network was checked on the basis of the measurement data for dynamic scenarios in an indoor environment. The obtained results clearly prove the validity of the proposed DL approach in the UWB WBANs and high (over 98.6% for most cases) efficiency for LOS and NLOS conditions classification. MDPI 2019-09-29 /pmc/articles/PMC6806233/ /pubmed/31569456 http://dx.doi.org/10.3390/s19194229 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Cwalina, Krzysztof K.
Rajchowski, Piotr
Blaszkiewicz, Olga
Olejniczak, Alicja
Sadowski, Jaroslaw
Deep Learning-Based LOS and NLOS Identification in Wireless Body Area Networks
title Deep Learning-Based LOS and NLOS Identification in Wireless Body Area Networks
title_full Deep Learning-Based LOS and NLOS Identification in Wireless Body Area Networks
title_fullStr Deep Learning-Based LOS and NLOS Identification in Wireless Body Area Networks
title_full_unstemmed Deep Learning-Based LOS and NLOS Identification in Wireless Body Area Networks
title_short Deep Learning-Based LOS and NLOS Identification in Wireless Body Area Networks
title_sort deep learning-based los and nlos identification in wireless body area networks
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6806233/
https://www.ncbi.nlm.nih.gov/pubmed/31569456
http://dx.doi.org/10.3390/s19194229
work_keys_str_mv AT cwalinakrzysztofk deeplearningbasedlosandnlosidentificationinwirelessbodyareanetworks
AT rajchowskipiotr deeplearningbasedlosandnlosidentificationinwirelessbodyareanetworks
AT blaszkiewiczolga deeplearningbasedlosandnlosidentificationinwirelessbodyareanetworks
AT olejniczakalicja deeplearningbasedlosandnlosidentificationinwirelessbodyareanetworks
AT sadowskijaroslaw deeplearningbasedlosandnlosidentificationinwirelessbodyareanetworks