Cargando…
An Efficient and Robust Unsupervised Anomaly Detection Method Using Ensemble Random Projection in Surveillance Videos
Video anomaly detection is widely applied in modern society, which is achieved by sensors such as surveillance cameras. This paper learns anomalies by exploiting videos under the fully unsupervised setting. To avoid massive computation caused by back-prorogation in existing methods, we propose a nov...
Autores principales: | Hu, Jingtao, Zhu, En, Wang, Siqi, Liu, Xinwang, Guo, Xifeng, Yin, Jianping |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6806243/ https://www.ncbi.nlm.nih.gov/pubmed/31554333 http://dx.doi.org/10.3390/s19194145 |
Ejemplares similares
-
Unsupervised Anomaly Detection with Distillated Teacher-Student Network Ensemble
por: Xiao, Qinfeng, et al.
Publicado: (2021) -
Robust, Primitive, and Unsupervised Quality Estimation for Segmentation Ensembles
por: Kofler, Florian, et al.
Publicado: (2021) -
Efficient anomaly recognition using surveillance videos
por: Saleem, Gulshan, et al.
Publicado: (2022) -
Unsupervised Video Anomaly Detection Based on Similarity with Predefined Text Descriptions
por: Kim, Jaehyun, et al.
Publicado: (2023) -
An Efficient Anomaly Recognition Framework Using an Attention Residual LSTM in Surveillance Videos
por: Ullah, Waseem, et al.
Publicado: (2021)