Cargando…
Classification of Micro-Damage in Piezoelectric Ceramics Using Machine Learning of Ultrasound Signals
Ultrasound based structural health monitoring of piezoelectric material is challenging if a damage changes at a microscale over time. Classifying geometrically similar damages with a difference in diameter as small as 100 [Formula: see text] m is difficult using conventional sensing and signal analy...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6806247/ https://www.ncbi.nlm.nih.gov/pubmed/31569337 http://dx.doi.org/10.3390/s19194216 |
Sumario: | Ultrasound based structural health monitoring of piezoelectric material is challenging if a damage changes at a microscale over time. Classifying geometrically similar damages with a difference in diameter as small as 100 [Formula: see text] m is difficult using conventional sensing and signal analysis approaches. Here, we use an unconventional ultrasound sensing approach that collects information of the entire bulk of the material and investigate the applicability of machine learning approaches for classifying such similar defects. Our results show that appropriate feature design combined with simple k-nearest neighbor classifier can provide up to 98% classification accuracy even though conventional features for time-series data and a variety of classifiers cannot achieve close to 70% accuracy. The newly proposed hybrid feature, which combines frequency domain information in the form of power spectral density and time domain information in the form of sign of slope change, is a suitable feature for achieving the best classification accuracy on this challenging problem. |
---|