Cargando…
Classification of Micro-Damage in Piezoelectric Ceramics Using Machine Learning of Ultrasound Signals
Ultrasound based structural health monitoring of piezoelectric material is challenging if a damage changes at a microscale over time. Classifying geometrically similar damages with a difference in diameter as small as 100 [Formula: see text] m is difficult using conventional sensing and signal analy...
Autores principales: | Tripathi, Gaurav, Anowarul, Habib, Agarwal, Krishna, Prasad, Dilip K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6806247/ https://www.ncbi.nlm.nih.gov/pubmed/31569337 http://dx.doi.org/10.3390/s19194216 |
Ejemplares similares
-
Single-Input and Multiple-Output Surface Acoustic Wave Sensing for Damage Quantification in Piezoelectric Sensors
por: Pamwani, Lavish, et al.
Publicado: (2018) -
Piezoelectric ceramics
por: Jaffe, Bernard, et al.
Publicado: (1971) -
Piezoelectric ceramic resonators
por: Erhart, Jiří, et al.
Publicado: (2016) -
Machine Learning Identification of Piezoelectric Properties
por: del Castillo, Mariana, et al.
Publicado: (2021) -
Classification of Hyperspectral or Trichromatic Measurements of Ocean Color Data into Spectral Classes
por: Prasad, Dilip K., et al.
Publicado: (2016)