Cargando…
Critical Location Spatial-Temporal Coverage Optimization in Visual Sensor Network
Coverage and network lifetime are two fundamental research issues in visual sensor networks. In some surveillance scenarios, there are some critical locations that demand to be monitored within a designated period. However, with limited sensor nodes resources, it may not be possible to meet both cov...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6806254/ https://www.ncbi.nlm.nih.gov/pubmed/31547560 http://dx.doi.org/10.3390/s19194106 |
Sumario: | Coverage and network lifetime are two fundamental research issues in visual sensor networks. In some surveillance scenarios, there are some critical locations that demand to be monitored within a designated period. However, with limited sensor nodes resources, it may not be possible to meet both coverage and network lifetime requirements. Therefore, in order to satisfy the network lifetime constraint, sometimes the coverage needs to be traded for network lifetime. In this paper, we study how to schedule sensor nodes to maximize the spatial-temporal coverage of the critical locations under the constraint of network lifetime. First, we analyze the sensor node scheduling problem for the spatial-temporal coverage of the critical locations and establish a mathematical model of the node scheduling. Next, by analyzing the characteristics of the model, we propose a Two-phase Spatial-temporal Coverage-enhancing Method (TSCM). In phase one, a Particle Swarm Optimization (PSO) algorithm is employed to organize the directions of sensor nodes to maximize the number of covered critical locations. In the second phase, we apply a Genetic Algorithm (GA) to get the optimal working time sequence of each sensor node. New coding and decoding strategies are devised to make GA suitable for this scheduling problem. Finally, simulations are conducted and the results show that TSCM has better performance than other approaches. |
---|