Cargando…
Machine Learning for LTE Energy Detection Performance Improvement
The growing number of radio communication devices and limited spectrum resources are drivers for the development of new techniques of dynamic spectrum access and spectrum sharing. In order to make use of the spectrum opportunistically, the concept of cognitive radio was proposed, where intelligent d...
Autores principales: | Wasilewska, Małgorzata, Bogucka, Hanna |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6806316/ https://www.ncbi.nlm.nih.gov/pubmed/31597330 http://dx.doi.org/10.3390/s19194348 |
Ejemplares similares
-
Federated Learning for 5G Radio Spectrum Sensing
por: Wasilewska, Małgorzata, et al.
Publicado: (2021) -
A Machine Learning Approach to Achieving Energy Efficiency in Relay-Assisted LTE-A Downlink System †
por: Hassan, Hammad, et al.
Publicado: (2019) -
Energy Efficient Resource Allocation for M2M Devices in LTE/LTE-A
por: Rekhissa, Hajer Ben, et al.
Publicado: (2019) -
An introduction to LTE: LTE, LTE-advanced, SAE, VoLTE and 4G mobile communications
por: Cox, Christopher
Publicado: (2014) -
Efficient models for enhancing the link adaptation performance of LTE/LTE-A networks
por: Bin-Salem, Ali Abdulqader, et al.
Publicado: (2022)