Cargando…

An Energy-Efficient Redundant Transmission Control Clustering Approach for Underwater Acoustic Networks

Underwater Acoustic Network (UAN) is an emerging technology with attractive applications. In such type of networks, the control-overhead, redundant inner-network transmissions management, and data-similarity are still very challenging. The cluster-based frameworks manage the control-overhead and red...

Descripción completa

Detalles Bibliográficos
Autores principales: Ahmed, Gulnaz, Zhao, Xi, Fareed, Mian Muhammad Sadiq, Fareed, Muhammad Zeeshan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6806349/
https://www.ncbi.nlm.nih.gov/pubmed/31574894
http://dx.doi.org/10.3390/s19194241
Descripción
Sumario:Underwater Acoustic Network (UAN) is an emerging technology with attractive applications. In such type of networks, the control-overhead, redundant inner-network transmissions management, and data-similarity are still very challenging. The cluster-based frameworks manage the control-overhead and redundant inner-network transmissions persuasively. However, the current clustering protocols consume a big part of their energy resources in data-similarity as these protocols periodically sense and forward the same information. In this paper, we introduce a novel two-level Redundant Transmission Control (RTC) approach that ensures the data-similarity using some statistical tests with an appropriate degree of confidence. Later, the Cluster Head (CH) and the Region Head (RH) remove the data-similarity from the original data before forwarding it to the next level. We also introduce a new spatiotemporal and dynamic CH role rotation technique which is capable to adjust the drifted field nodes because of water current movements. The beauty of the proposed model is that the RH controls the communications and redundant transmission between the CH and Mobile Sink (MS), while the CH controls the redundant inner-network transmissions and data-similarity between the cluster members. We conduct simulations to evaluate the performance of our designed framework under different criteria such as average end-to-end delay, the packet delivery ratio, and energy consumption of the network with respect to the recent schemes. The presented results reveal that the proposed model outperforms the current approaches in terms of the selected metrics.