Cargando…
Diagnostic screening of organic contaminant level in solidified/stabilized pre-treated oil-based drill cuttings
The reuse of solidified/stabilized low-temperature thermally desorbed (pre-treated) oil-based drill cuttings for construction purposes is becoming increasingly attractive in recent times; though, without screening a priori the levels of target residual organic contaminants against environmental guid...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6806413/ https://www.ncbi.nlm.nih.gov/pubmed/31692587 http://dx.doi.org/10.1016/j.heliyon.2019.e02644 |
_version_ | 1783461623359340544 |
---|---|
author | Araka, Perez P. Okparanma, Reuben N. Ayotamuno, Josiah M. |
author_facet | Araka, Perez P. Okparanma, Reuben N. Ayotamuno, Josiah M. |
author_sort | Araka, Perez P. |
collection | PubMed |
description | The reuse of solidified/stabilized low-temperature thermally desorbed (pre-treated) oil-based drill cuttings for construction purposes is becoming increasingly attractive in recent times; though, without screening a priori the levels of target residual organic contaminants against environmental guidelines to ensure compliance. In this study, pre-treated oil-based drill cuttings were collected from a waste treatment facility in the Niger Delta Province (5.317(o)N; 6.467(o)E), Nigeria and subjected to cement-based solidification/stabilization (S/S) followed by chemical leaching and screening of the data against local environmental guidelines. S/S was done with drill cuttings contents of 0 (control), 2, 4, 6, 8, and 10 % as part replacement for fine aggregate at 0.6:1, 0.65:1, 0.7:1, 0.75:1, and 0.8:1 water-to-cement ratios using 1:2:4 mix design for a grade-20 concrete. Afterwards, the surface microstructure, elemental composition, and unconfined compressive strength (UCS) of the solidified/stabilized matrix were determined. Amounts of heavy metals and total petroleum hydrocarbons (TPH) leached were also assessed. Results showed that the 2 % drill cuttings addition yielded the highest UCS (22.22–26.22 N/mm(2)) at water-to-cement ratio of 0.6:1, which were well above the recommended minimum UCS of 20 N/mm(2) for a grade-20 concrete. The average amount of residual TPH in the solidified/stabilized matrix (62.41 mg/kg) was slightly higher than the local regulatory target value of 50 mg/kg; suggesting that the cement-based S/S failed to immobilize completely all the hydrocarbons in the pre-treated oil-based drill cuttings. This shows that the solidified/stabilized matrix is not in compliance with environmental guidelines on TPH for sustainable reuse as construction materials. |
format | Online Article Text |
id | pubmed-6806413 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-68064132019-11-05 Diagnostic screening of organic contaminant level in solidified/stabilized pre-treated oil-based drill cuttings Araka, Perez P. Okparanma, Reuben N. Ayotamuno, Josiah M. Heliyon Article The reuse of solidified/stabilized low-temperature thermally desorbed (pre-treated) oil-based drill cuttings for construction purposes is becoming increasingly attractive in recent times; though, without screening a priori the levels of target residual organic contaminants against environmental guidelines to ensure compliance. In this study, pre-treated oil-based drill cuttings were collected from a waste treatment facility in the Niger Delta Province (5.317(o)N; 6.467(o)E), Nigeria and subjected to cement-based solidification/stabilization (S/S) followed by chemical leaching and screening of the data against local environmental guidelines. S/S was done with drill cuttings contents of 0 (control), 2, 4, 6, 8, and 10 % as part replacement for fine aggregate at 0.6:1, 0.65:1, 0.7:1, 0.75:1, and 0.8:1 water-to-cement ratios using 1:2:4 mix design for a grade-20 concrete. Afterwards, the surface microstructure, elemental composition, and unconfined compressive strength (UCS) of the solidified/stabilized matrix were determined. Amounts of heavy metals and total petroleum hydrocarbons (TPH) leached were also assessed. Results showed that the 2 % drill cuttings addition yielded the highest UCS (22.22–26.22 N/mm(2)) at water-to-cement ratio of 0.6:1, which were well above the recommended minimum UCS of 20 N/mm(2) for a grade-20 concrete. The average amount of residual TPH in the solidified/stabilized matrix (62.41 mg/kg) was slightly higher than the local regulatory target value of 50 mg/kg; suggesting that the cement-based S/S failed to immobilize completely all the hydrocarbons in the pre-treated oil-based drill cuttings. This shows that the solidified/stabilized matrix is not in compliance with environmental guidelines on TPH for sustainable reuse as construction materials. Elsevier 2019-10-16 /pmc/articles/PMC6806413/ /pubmed/31692587 http://dx.doi.org/10.1016/j.heliyon.2019.e02644 Text en © 2019 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Araka, Perez P. Okparanma, Reuben N. Ayotamuno, Josiah M. Diagnostic screening of organic contaminant level in solidified/stabilized pre-treated oil-based drill cuttings |
title | Diagnostic screening of organic contaminant level in solidified/stabilized pre-treated oil-based drill cuttings |
title_full | Diagnostic screening of organic contaminant level in solidified/stabilized pre-treated oil-based drill cuttings |
title_fullStr | Diagnostic screening of organic contaminant level in solidified/stabilized pre-treated oil-based drill cuttings |
title_full_unstemmed | Diagnostic screening of organic contaminant level in solidified/stabilized pre-treated oil-based drill cuttings |
title_short | Diagnostic screening of organic contaminant level in solidified/stabilized pre-treated oil-based drill cuttings |
title_sort | diagnostic screening of organic contaminant level in solidified/stabilized pre-treated oil-based drill cuttings |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6806413/ https://www.ncbi.nlm.nih.gov/pubmed/31692587 http://dx.doi.org/10.1016/j.heliyon.2019.e02644 |
work_keys_str_mv | AT arakaperezp diagnosticscreeningoforganiccontaminantlevelinsolidifiedstabilizedpretreatedoilbaseddrillcuttings AT okparanmareubenn diagnosticscreeningoforganiccontaminantlevelinsolidifiedstabilizedpretreatedoilbaseddrillcuttings AT ayotamunojosiahm diagnosticscreeningoforganiccontaminantlevelinsolidifiedstabilizedpretreatedoilbaseddrillcuttings |