Cargando…

Root-associated microbiomes of wheat under the combined effect of plant development and nitrogen fertilization

BACKGROUND: Plant roots assemble microbial communities both inside the roots and in the rhizosphere, and these root-associated microbiomes play pivotal roles in plant nutrition and productivity. Although it is known that increased synthetic fertilizer input in Chinese farmlands over the past 50 year...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Shuaimin, Waghmode, Tatoba R., Sun, Ruibo, Kuramae, Eiko E., Hu, Chunsheng, Liu, Binbin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6806522/
https://www.ncbi.nlm.nih.gov/pubmed/31640813
http://dx.doi.org/10.1186/s40168-019-0750-2
_version_ 1783461649679646720
author Chen, Shuaimin
Waghmode, Tatoba R.
Sun, Ruibo
Kuramae, Eiko E.
Hu, Chunsheng
Liu, Binbin
author_facet Chen, Shuaimin
Waghmode, Tatoba R.
Sun, Ruibo
Kuramae, Eiko E.
Hu, Chunsheng
Liu, Binbin
author_sort Chen, Shuaimin
collection PubMed
description BACKGROUND: Plant roots assemble microbial communities both inside the roots and in the rhizosphere, and these root-associated microbiomes play pivotal roles in plant nutrition and productivity. Although it is known that increased synthetic fertilizer input in Chinese farmlands over the past 50 years has resulted in not only increased yields but also environmental problems, we lack a comprehensive understanding of how crops under elevated nutrient input shape root-associated microbial communities, especially through adjusting the quantities and compositions of root metabolites and exudates. METHODS: The compositions of bacterial and fungal communities from the roots and rhizosphere of wheat (Triticum aestivum L.) under four levels of long-term inorganic nitrogen (N) fertilization were characterized at the tillering, jointing and ripening stages. The root-released organic carbon (ROC), organic acids in the root exudates and soil organic carbon (SOC) and soil active carbon (SAC) in the rhizosphere were quantified. RESULTS: ROC levels varied dramatically across wheat growth stages and correlated more with the bacterial community than with the fungal community. Rhizosphere SOC and SAC levels were elevated by long-term N fertilization but varied only slightly across growth stages. Variation in the microbial community structure across plant growth stages showed a decreasing trend with N fertilization level in the rhizosphere. In addition, more bacterial and fungal genera were significantly correlated in the jointing and ripening stages than in the tillering stage in the root samples. A number of bacterial genera that shifted in response to N fertilization, including Arthrobacter, Bacillus and Devosia, correlated significantly with acetic acid, oxalic acid, succinic acid and tartaric acid levels. CONCLUSIONS: Our results indicate that both plant growth status and N input drive changes in the microbial community structure in the root zone of wheat. Plant growth stage demostrated a stronger influence on bacterial than on fungal community composition. A number of bacterial genera that have been described as plant growth-promoting rhizobacteria (PGPR) responded positively to N fertilization, and their abundance correlated significantly with the organic acid level, suggesting that the secretion of organic acids may be a strategy developed by plants to recruit beneficial microbes in the root zone to cope with high N input. These results provide novel insight into the associations among increased N input, altered carbon availability, and shifts in microbial communities in the plant roots and rhizosphere of intensive agricultural ecosystems.
format Online
Article
Text
id pubmed-6806522
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-68065222019-10-28 Root-associated microbiomes of wheat under the combined effect of plant development and nitrogen fertilization Chen, Shuaimin Waghmode, Tatoba R. Sun, Ruibo Kuramae, Eiko E. Hu, Chunsheng Liu, Binbin Microbiome Research BACKGROUND: Plant roots assemble microbial communities both inside the roots and in the rhizosphere, and these root-associated microbiomes play pivotal roles in plant nutrition and productivity. Although it is known that increased synthetic fertilizer input in Chinese farmlands over the past 50 years has resulted in not only increased yields but also environmental problems, we lack a comprehensive understanding of how crops under elevated nutrient input shape root-associated microbial communities, especially through adjusting the quantities and compositions of root metabolites and exudates. METHODS: The compositions of bacterial and fungal communities from the roots and rhizosphere of wheat (Triticum aestivum L.) under four levels of long-term inorganic nitrogen (N) fertilization were characterized at the tillering, jointing and ripening stages. The root-released organic carbon (ROC), organic acids in the root exudates and soil organic carbon (SOC) and soil active carbon (SAC) in the rhizosphere were quantified. RESULTS: ROC levels varied dramatically across wheat growth stages and correlated more with the bacterial community than with the fungal community. Rhizosphere SOC and SAC levels were elevated by long-term N fertilization but varied only slightly across growth stages. Variation in the microbial community structure across plant growth stages showed a decreasing trend with N fertilization level in the rhizosphere. In addition, more bacterial and fungal genera were significantly correlated in the jointing and ripening stages than in the tillering stage in the root samples. A number of bacterial genera that shifted in response to N fertilization, including Arthrobacter, Bacillus and Devosia, correlated significantly with acetic acid, oxalic acid, succinic acid and tartaric acid levels. CONCLUSIONS: Our results indicate that both plant growth status and N input drive changes in the microbial community structure in the root zone of wheat. Plant growth stage demostrated a stronger influence on bacterial than on fungal community composition. A number of bacterial genera that have been described as plant growth-promoting rhizobacteria (PGPR) responded positively to N fertilization, and their abundance correlated significantly with the organic acid level, suggesting that the secretion of organic acids may be a strategy developed by plants to recruit beneficial microbes in the root zone to cope with high N input. These results provide novel insight into the associations among increased N input, altered carbon availability, and shifts in microbial communities in the plant roots and rhizosphere of intensive agricultural ecosystems. BioMed Central 2019-10-22 /pmc/articles/PMC6806522/ /pubmed/31640813 http://dx.doi.org/10.1186/s40168-019-0750-2 Text en © The Author(s). 2019 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Research
Chen, Shuaimin
Waghmode, Tatoba R.
Sun, Ruibo
Kuramae, Eiko E.
Hu, Chunsheng
Liu, Binbin
Root-associated microbiomes of wheat under the combined effect of plant development and nitrogen fertilization
title Root-associated microbiomes of wheat under the combined effect of plant development and nitrogen fertilization
title_full Root-associated microbiomes of wheat under the combined effect of plant development and nitrogen fertilization
title_fullStr Root-associated microbiomes of wheat under the combined effect of plant development and nitrogen fertilization
title_full_unstemmed Root-associated microbiomes of wheat under the combined effect of plant development and nitrogen fertilization
title_short Root-associated microbiomes of wheat under the combined effect of plant development and nitrogen fertilization
title_sort root-associated microbiomes of wheat under the combined effect of plant development and nitrogen fertilization
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6806522/
https://www.ncbi.nlm.nih.gov/pubmed/31640813
http://dx.doi.org/10.1186/s40168-019-0750-2
work_keys_str_mv AT chenshuaimin rootassociatedmicrobiomesofwheatunderthecombinedeffectofplantdevelopmentandnitrogenfertilization
AT waghmodetatobar rootassociatedmicrobiomesofwheatunderthecombinedeffectofplantdevelopmentandnitrogenfertilization
AT sunruibo rootassociatedmicrobiomesofwheatunderthecombinedeffectofplantdevelopmentandnitrogenfertilization
AT kuramaeeikoe rootassociatedmicrobiomesofwheatunderthecombinedeffectofplantdevelopmentandnitrogenfertilization
AT huchunsheng rootassociatedmicrobiomesofwheatunderthecombinedeffectofplantdevelopmentandnitrogenfertilization
AT liubinbin rootassociatedmicrobiomesofwheatunderthecombinedeffectofplantdevelopmentandnitrogenfertilization