Cargando…

Improving Imaging Quality of Real-time Fourier Single-pixel Imaging via Deep Learning

Fourier single pixel imaging (FSPI) is well known for reconstructing high quality images but only at the cost of long imaging time. For real-time applications, FSPI relies on under-sampled reconstructions, failing to provide high quality images. In order to improve imaging quality of real-time FSPI,...

Descripción completa

Detalles Bibliográficos
Autores principales: Rizvi, Saad, Cao, Jie, Zhang, Kaiyu, Hao, Qun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6806619/
https://www.ncbi.nlm.nih.gov/pubmed/31569622
http://dx.doi.org/10.3390/s19194190
Descripción
Sumario:Fourier single pixel imaging (FSPI) is well known for reconstructing high quality images but only at the cost of long imaging time. For real-time applications, FSPI relies on under-sampled reconstructions, failing to provide high quality images. In order to improve imaging quality of real-time FSPI, a fast image reconstruction framework based on deep learning (DL) is proposed. More specifically, a deep convolutional autoencoder network with symmetric skip connection architecture for real time 96 × 96 imaging at very low sampling rates (5–8%) is employed. The network is trained on a large image set and is able to reconstruct diverse images unseen during training. The promising experimental results show that the proposed FSPI coupled with DL (termed DL-FSPI) outperforms conventional FSPI in terms of image quality at very low sampling rates.