Cargando…
Predicting rice blast disease: machine learning versus process-based models
BACKGROUND: In this study, we compared four models for predicting rice blast disease, two operational process-based models (Yoshino and Water Accounting Rice Model (WARM)) and two approaches based on machine learning algorithms (M5Rules and Recurrent Neural Networks (RNN)), the former inducing a rul...
Autores principales: | Nettleton, David F., Katsantonis, Dimitrios, Kalaitzidis, Argyris, Sarafijanovic-Djukic, Natasa, Puigdollers, Pau, Confalonieri, Roberto |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6806664/ https://www.ncbi.nlm.nih.gov/pubmed/31640541 http://dx.doi.org/10.1186/s12859-019-3065-1 |
Ejemplares similares
-
Machine learning techniques in disease forecasting: a case study on rice blast prediction
por: Kaundal, Rakesh, et al.
Publicado: (2006) -
Optimizing Extraction Conditions of Free and Bound Phenolic Compounds from Rice By-Products and Their Antioxidant Effects
por: Irakli, Maria, et al.
Publicado: (2018) -
Rice and Rice Blast: New Bases for Comparison
por: Eubanks, M
Publicado: (2002) -
Roles of Peroxisomes in the Rice Blast Fungus
por: Chen, Xiao-Lin, et al.
Publicado: (2016) -
Natural rice rhizospheric microbes suppress rice blast infections
por: Spence, Carla, et al.
Publicado: (2014)