Cargando…
Clonal ST131-H22 Escherichia coli strains from a healthy pig and a human urinary tract infection carry highly similar resistance and virulence plasmids
The interplay between food production animals, humans and the environment with respect to the transmission of drug-resistant pathogens is widely debated and poorly understood. Pandemic uropathogenic Escherichia coli ST131-H30Rx, with conserved fluoroquinolone and cephalosporin resistance, are not fr...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Microbiology Society
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6807379/ https://www.ncbi.nlm.nih.gov/pubmed/31526455 http://dx.doi.org/10.1099/mgen.0.000295 |
Sumario: | The interplay between food production animals, humans and the environment with respect to the transmission of drug-resistant pathogens is widely debated and poorly understood. Pandemic uropathogenic Escherichia coli ST131-H30Rx, with conserved fluoroquinolone and cephalosporin resistance, are not frequently identified in animals. However, the phylogenetic precursor lineage ST131-H22 in animals and associated meat products is being reported with increasing frequency. Here we characterized two highly related ST131-H22 strains, one from a healthy pig and the other from a human infection (in 2007 and 2009, respectively). We used both long and short genome sequencing and compared them to ST131-H22 genome sequences available in public repositories. Even within the context of H22 strains, the two strains in question were highly related, separated by only 20 core SNPs. Furthermore, they were closely related to a faecal strain isolated in 2010 from a geographically distinct, healthy human in New South Wales, Australia. The porcine and hospital strains carried highly similar HI2-ST3 multidrug resistant plasmids with differences in the hospital strain arising due to IS-mediated insertions and rearrangements. Near identical ColV plasmids were also present in both strains, further supporting their shared evolutionary history. This work highlights the importance of adopting a One Health approach to genomic surveillance to gain insights into pathogen evolution and spread. |
---|