Cargando…
Uncovering convolutional neural network decisions for diagnosing multiple sclerosis on conventional MRI using layer-wise relevance propagation
Machine learning-based imaging diagnostics has recently reached or even surpassed the level of clinical experts in several clinical domains. However, classification decisions of a trained machine learning system are typically non-transparent, a major hindrance for clinical integration, error trackin...
Autores principales: | Eitel, Fabian, Soehler, Emily, Bellmann-Strobl, Judith, Brandt, Alexander U., Ruprecht, Klemens, Giess, René M., Kuchling, Joseph, Asseyer, Susanna, Weygandt, Martin, Haynes, John-Dylan, Scheel, Michael, Paul, Friedemann, Ritter, Kerstin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6807560/ https://www.ncbi.nlm.nih.gov/pubmed/31634822 http://dx.doi.org/10.1016/j.nicl.2019.102003 |
Ejemplares similares
-
Central stress processing, T-cell responsivity to stress hormones and disease severity in multiple sclerosis
por: Brasanac, Jelena, et al.
Publicado: (2022) -
Longitudinal analysis of T1w/T2w ratio in patients with multiple sclerosis from first clinical presentation
por: Cooper, Graham, et al.
Publicado: (2021) -
Differences in Advanced Magnetic Resonance Imaging in MOG-IgG and AQP4-IgG Seropositive Neuromyelitis Optica Spectrum Disorders: A Comparative Study
por: Schmidt, Felix A., et al.
Publicado: (2020) -
Imaging markers of disability in aquaporin-4 immunoglobulin G seropositive neuromyelitis optica: a graph theory study
por: Chien, Claudia, et al.
Publicado: (2019) -
Pain in AQP4-IgG-positive and MOG-IgG-positive neuromyelitis optica spectrum disorders
por: Asseyer, Susanna, et al.
Publicado: (2018)