Cargando…
Optimized fast GPU implementation of robust artificial-neural-networks for k-space interpolation (RAKI) reconstruction
BACKGROUND: Robust Artificial-neural-networks for k-space Interpolation (RAKI) is a recently proposed deep-learning-based reconstruction algorithm for parallel imaging. Its main premise is to perform k-space interpolation using convolutional neural networks (CNNs) trained on subject-specific autocal...
Autores principales: | Zhang, Chi, Hosseini, Seyed Amir Hossein, Weingärtner, Sebastian, Uǧurbil, Kâmil, Moeller, Steen, Akçakaya, Mehmet |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6808331/ https://www.ncbi.nlm.nih.gov/pubmed/31644542 http://dx.doi.org/10.1371/journal.pone.0223315 |
Ejemplares similares
-
Accelerated coronary MRI with sRAKI: A database-free self-consistent neural network k-space reconstruction for arbitrary undersampling
por: Hosseini, Seyed Amir Hossein, et al.
Publicado: (2020) -
Residual RAKI: A hybrid linear and non-linear approach for scan-specific k-space deep learning
por: Zhang, Chi, et al.
Publicado: (2022) -
Improved Simultaneous Multi-slice imaging with Composition of k-space Interpolations (SMS-COOKIE) for myocardial T(1) mapping
por: Demirel, Ömer Burak, et al.
Publicado: (2023) -
Multi‐mask self‐supervised learning for physics‐guided neural networks in highly accelerated magnetic resonance imaging
por: Yaman, Burhaneddin, et al.
Publicado: (2022) -
Revisiting [Formula: see text]-wavelet compressed-sensing MRI in the era of deep learning
por: Gu, Hongyi, et al.
Publicado: (2022)