Cargando…

Tissue-specific changes in size and shape of the ligaments and tendons of the porcine knee during post-natal growth

Prior studies have analyzed growth of musculoskeletal tissues between species or across body segments; however, little research has assessed the differences in similar tissues within a single joint. Here we studied changes in the length and cross-sectional area of four ligaments and tendons, (anteri...

Descripción completa

Detalles Bibliográficos
Autores principales: Cone, Stephanie G., Piercy, Hope E., Lambeth, Emily P., Ru, Hongyu, Piedrahita, Jorge A., Spang, Jeffrey T., Fordham, Lynn A., Fisher, Matthew B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6808441/
https://www.ncbi.nlm.nih.gov/pubmed/31644571
http://dx.doi.org/10.1371/journal.pone.0219637
Descripción
Sumario:Prior studies have analyzed growth of musculoskeletal tissues between species or across body segments; however, little research has assessed the differences in similar tissues within a single joint. Here we studied changes in the length and cross-sectional area of four ligaments and tendons, (anterior cruciate ligament, patellar tendon, medial collateral ligament, lateral collateral ligament) in the tibiofemoral joint of female Yorkshire pigs through high-field magnetic resonance imaging throughout growth. Tissue lengths increased by 4- to 5-fold from birth to late adolescence across the tissues while tissue cross-sectional area increased by 10–20-fold. The anterior cruciate ligament and lateral collateral ligament showed allometric growth favoring change in length over change in cross-sectional area while the patellar tendon and medial collateral ligament grow in an isometric manner. Additionally, changes in the length and cross-sectional area of the anterior cruciate ligament did not increase as much as in the other ligaments and tendon of interest. Overall, these findings suggest that musculoskeletal soft tissue morphometry can vary within tissues of similar structure and within a single joint during post-natal growth.