Cargando…
PharmacoNER Tagger: a deep learning-based tool for automatically finding chemicals and drugs in Spanish medical texts
Automatically detecting mentions of pharmaceutical drugs and chemical substances is key for the subsequent extraction of relations of chemicals with other biomedical entities such as genes, proteins, diseases, adverse reactions or symptoms. The identification of drug mentions is also a prior step fo...
Autores principales: | Armengol-Estapé, Jordi, Soares, Felipe, Marimon, Montserrat, Krallinger, Martin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Korea Genome Organization
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6808625/ https://www.ncbi.nlm.nih.gov/pubmed/31307130 http://dx.doi.org/10.5808/GI.2019.17.2.e15 |
Ejemplares similares
-
Deep learning with language models improves named entity recognition for PharmaCoNER
por: Sun, Cong, et al.
Publicado: (2021) -
CheNER: chemical named entity recognizer
por: Usié, Anabel, et al.
Publicado: (2014) -
SciBabel: a system for crowd-sourced validation of automatic translations of scientific texts
por: Soares, Felipe, et al.
Publicado: (2020) -
Improving spaCy dependency annotation and PoS tagging web service using independent NER services
por: Colic, Nico, et al.
Publicado: (2019) -
LexExp: a system for automatically expanding concept lexicons for noisy biomedical texts
por: Sarker, Abeed
Publicado: (2020)