Cargando…

1998. Impact of Rapid Blood Culture Identification with Real-Time Antimicrobial Stewardship (ASP) in Patients with Staphylococcus aureus (S. aureus) and Enterococcus spp. Bacteremia at a Large Academic Medical Center

BACKGROUND: The initiation of appropriate antimicrobial therapy is dependent on timely identification of the pathogen. FilmArray Blood Culture Identification Panel (BCID) is a rapid, multiplex polymerase chain reaction (PCR) panel that identifies 24 pathogens and 3 antibiotic resistance genes associ...

Descripción completa

Detalles Bibliográficos
Autores principales: Ryan Russo, Hannah, Phe, Kady, Al Mohajer, Mayar, Hirase, Jessica
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6809225/
http://dx.doi.org/10.1093/ofid/ofz360.1678
Descripción
Sumario:BACKGROUND: The initiation of appropriate antimicrobial therapy is dependent on timely identification of the pathogen. FilmArray Blood Culture Identification Panel (BCID) is a rapid, multiplex polymerase chain reaction (PCR) panel that identifies 24 pathogens and 3 antibiotic resistance genes associated with bloodstream infections within 1 hour of growth. The purpose of this study was to compare the clinical impact of rapid BCID testing vs. standard blood culture processing, both coupled with real-time ASP, in patients with S. aureus and Enterococcus spp. bacteremia. METHODS: This was a single-center, retrospective chart review conducted as a pre-post intervention quasi-experimental study. The pre-intervention group included adult patients with S.aureus and Enterococcus spp. bacteremia identified by standard blood culture processing (PRE) and the post-intervention group included those identified by rapid BCID testing (POST). The primary endpoint was time in hours from positive Gram stain to initiation of optimal antimicrobial therapy [defined as vancomycin (VAN), linezolid (LZD), daptomycin (DAP), or ceftaroline for methicillin-resistant S. aureus (MRSA); nafcillin or cefazolin for methicillin-susceptible S. aureus (MSSA); DAP or LZD for VAN-resistant Enterococcus (VRE); VAN or ampicillin (if susceptible) for VAN-susceptible Enterococcus (VSE)]. Secondary endpoints included time to active therapy (defined as an antimicrobial to which the organism was susceptible), time to identification of pathogen, length of hospital stay (LOS) after positive culture, and 30-day mortality. RESULTS: 132 patients were included. Mean time to optimal therapy decreased from 21.4 hours PRE to 10.7 hours POST (P = 0.048). Time to optimal therapy was shorter POST for MSSA [59.2 hours PRE vs. 25.8 hours POST (P < 0.001)] and VRE bacteremia [24.6 hours PRE vs. 5.6 hours POST (P = 0.005)]. Time to identification of pathogen decreased from 75.6 hours PRE to 2.7 hours POST (P < 0.001). Groups did not differ in time to active therapy, LOS, nor 30-day mortality. CONCLUSION: Antimicrobial Stewardship coupled with rapid BCID testing significantly decreased time to pathogen identification as well as time to optimal therapy in patients with S. aureus and Enterococcus spp. bacteremia, most notably for MSSA and VRE. DISCLOSURES: All authors: No reported disclosures.