Cargando…

1560. Pharmacokinetics–Pharmacodynamics (PK-PD) of Gepotidacin (GEP) Against Escherichia coli in Murine Pyelonephritis and Thigh Infection Models

BACKGROUND: GEP, a first in class novel triazaacenaphthylene bacterial topoisomerase inhibitor, inhibits bacterial replication and has in vitro activity against key pathogens implicated in a range of infections, including drug-resistant strains of E. coli associated with acute cystitis. METHODS: PK...

Descripción completa

Detalles Bibliográficos
Autores principales: Barth, Aline, Mininger, Cindy l, Lewandowski, Thomas, Hossain, Mohammad, Rittenhouse, Stephen, Hoover, Jennifer
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6809414/
http://dx.doi.org/10.1093/ofid/ofz360.1424
Descripción
Sumario:BACKGROUND: GEP, a first in class novel triazaacenaphthylene bacterial topoisomerase inhibitor, inhibits bacterial replication and has in vitro activity against key pathogens implicated in a range of infections, including drug-resistant strains of E. coli associated with acute cystitis. METHODS: PK and PD studies were conducted in murine (male CD-1 mice) thigh and kidney infections. The administered doses ranged from 1 to 200 mg/kg SC every 6 hours starting 1-hour post-infection. Infected tissues were evaluated for bacterial burden at 24-h post-infection (baseline controls at 1-hour post-infection). Plasma and tissue samples (kidney or thigh homogenates) were collected at 15, 30, 60, 120, 240 and 360 minutes. A population PK (PopPK) model was built in NONMEM using plasma exposures. Efficacy was determined against E. coli ALL, 997577, ATCC25922, IR5 and NCTC13441 (MICs of 1 to 4 µg/mL) in thigh-infected neutropenic (I-) mice and against E. coli ALL in kidney-infected immunocompetent (I+) and I- mice. The PopPK model was used to determine GEP exposures associated with efficacy. PK-PD analyses were conducted using Phoenix WinNonLin 6.3 (Pharsight). The change in log(10) colony-forming units (CFU) from baseline were correlated with free drug (f) AUC:MIC using an inhibitory model from the Phoenix library, and model parameter values for each isolate were used to calculate the plasma fAUC:MIC associated with stasis, 1- or 2-log(10) reductions in CFU. RESULTS: Plasma PK data were best fit by a 1-compartment IV model with first-order elimination and were similar in I+ vs. I- and thigh- vs. kidney-infected mice. The AUC(0-6) of GEP in kidney was approximately 4- to 5-fold higher than in plasma while the AUC(0-6) in thigh was approximately half of plasma. In the I- thigh model, median plasma fAUC:MIC ratios for stasis, 1- or 2-log(10) reductions in CFU were 11, 16, and 25 (ranges 3–17, 4–25 and 7–40), respectively. Efficacy vs. E. coli ALL was similar in I- mice infected in thigh or kidney. In I+ mice, the PK-PD target was reduced by half. CONCLUSION: Median plasma fAUC:MIC targets ranged from 11 to 25. Higher drug levels in kidney vs. plasma or thigh did not translate into improved efficacy in pyelonephritis vs. thigh-infection models. DISCLOSURES: All authors: No reported disclosures.