Cargando…
2753. Induction of Broadly Cross-Reactive Immune Responses Against A(H3N2) Airuses: Results of a Phase 2 Trial of a Novel Recombinant Hemagglutinin Saponin-Adjuvanted Nanoparticle Seasonal Influenza Vaccine
BACKGROUND: We developed a recombinant saponin-adjuvanted (Matrix-M1) quadrivalent hemagglutinin nanoparticle influenza vaccine (qNIV; NanoFlu) for older adults to address two impediments to efficacy of current, predominantly egg-derived, seasonal influenza vaccines: (1) limited protection against a...
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6809831/ http://dx.doi.org/10.1093/ofid/ofz360.2430 |
Sumario: | BACKGROUND: We developed a recombinant saponin-adjuvanted (Matrix-M1) quadrivalent hemagglutinin nanoparticle influenza vaccine (qNIV; NanoFlu) for older adults to address two impediments to efficacy of current, predominantly egg-derived, seasonal influenza vaccines: (1) limited protection against antigenic drift variants, particularly H3N2 viruses; and (2) antigenic mismatch between vaccine and circulating strains due to egg-adaptive mutations arising during manufacturing. In a prior Phase 1 trial, we showed that qNIV induced robust, broadly cross-reactive antibody responses against multiple antigenically drifted H3N2 viruses, which were 47–64% better than the egg-derived comparator trivalent high-dose inactivated influenza vaccine (IIV3-HD; Fluzone-High Dose). We undertook a Phase 2 trial to optimize the formulation of qNIV, and to compare qNIV immune responses to those of IIV3-HD and quadrivalent recombinant influenza vaccine (RIV4; FluBlok). METHODS: In this phase 2 dose and formulation finding RCT, we randomized 1,375 subjects aged ≥65 years to be immunized with 1 of 7 test vaccines: 5 different formulations of qNIV, IIV3-HD, or RIV4; and assessed wild-type hemagglutinin-inhibition (wt-HAI) and microneutralization (wt-MN) antibody responses (Day 0/28/56). RESULTS: Matrix-M1-adjuvanted qNIV induced 15–29% higher wt-HAI titers across 5 vaccine homologous or drifted H3N2 strains at Day 28 relative to unadjuvanted qNIV (statistically significantly superior for 5 of 6 strains tested). At Day 28, several qNIV formulations induced significantly superior wt-HAI titers vs. IIV3-HD (39–45%, 17–22%, and 44–48% greater titers for homologous A/Singapore/INFIMH-16–0019/2016—H3N2, historic-drifted A/Switzerland/9715293/2013—H3N2, and forward-drifted A/Wisconsin/19/2017—H3N2, respectively); and comparable HAI titers vs. RIV4. Wt-MN and wt-HAI data showed concordant patterns across treatment groups. CONCLUSION: qNIV induced superior wt-HAI antibody responses vs. IIV3-HD against homologous or drifted H3N2 viruses and similar responses to RIV4. qNIV may address several critical challenges confronting current egg-derived influenza vaccines, especially in the older adult population. DISCLOSURES: All authors: No reported disclosures. |
---|