Cargando…
2167. Evaluation of Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy for Rapid and Reagent-Free Identification of Burkholderia spp.
BACKGROUND: Burkholderia cepacia complex including B. gladioli are opportunistic pathogenic bacteria affecting the immunocompromised population. For prognosis and appropriate treatment, rapid and accurate species identification is particularly important for those diagnosed with cystic fibrosis (CF)....
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6810090/ http://dx.doi.org/10.1093/ofid/ofz360.1847 |
Sumario: | BACKGROUND: Burkholderia cepacia complex including B. gladioli are opportunistic pathogenic bacteria affecting the immunocompromised population. For prognosis and appropriate treatment, rapid and accurate species identification is particularly important for those diagnosed with cystic fibrosis (CF). Conventional biochemical identification techniques are insensitive and problematic for identifying Burkholderia spp., leading to common misidentification or inconclusive results. Recent studies have successfully employed attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy for rapid, reagent-free and cost-effective microbial identification. In the present study, identification of Burkholderia spp. by this technique is investigated. METHODS: A total of 59 isolates belonging to 7 species of Burkholderia were included in this study; all these isolates had been well-characterized by VITEK 2, 16S rRNA sequencing, random amplification of polymorphic DNA (recA typing) and/or matrix-assisted laser desorption/ionization time of flight mass spectrometry. ATR-FTIR spectra were acquired directly from colonies on 5% blood agar plates. RESULTS: A spectral database containing ATR-FTIR spectra of over 4300 bacterial isolates, encompassing over 70 genera and 190 species, was updated to include spectra of 39 isolates collected in this study and employed in the identification of the other isolates (n = 20). All isolates were correctly identified as Burkholderia by a multitier search approach. For Burkholderia species identification, spectra belonging to 39 isolates representative of all 7 species were used to construct a spectral database employed to identify the other 20 isolates [B. anthina (n = 2), B. gladioli (n = 8), B. multivorans (n = 7), and B. vietnamiensis (n = 3)]. Compared with VITEK 2 (30% correct species identification), ATR-FTIR spectroscopy correctly identified all but one isolate, resulting in overall correct species identification of 95%. Prospectively (10 months), 5 of 1100 isolates collected were identified as Burkholderia spp. by ATR-FTIR spectroscopy in concordance with VITEK 2. CONCLUSION: ATR-FTIR spectroscopy can provide the means of rapid Burkholderia spp. identification for appropriate treatment of those diagnosed with CF. DISCLOSURES: All authors: No reported disclosures. |
---|