Cargando…
2438. Using Artificial Neural Networks to Predict Intra-Abdominal Abscess Risk Post-Appendectomy
BACKGROUND: Applying Artificial Intelligence techniques to healthcare data are gaining momentum. Early identification of patients at risk of surgical site infections is a major clinical goal. Our objective for this study was to determine whether deep learning AI techniques could identify patients at...
Autores principales: | Al Khatib, Hassan S, Alramadhan, Morouge, Murphy, James, Tsao, KuoJen, Chang, Michael L |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6810183/ http://dx.doi.org/10.1093/ofid/ofz360.2116 |
Ejemplares similares
-
Using Artificial Neural Networks to Predict Intra-Abdominal Abscess Risk Post-Appendectomy
por: Alramadhan, Morouge M., et al.
Publicado: (2022) -
Risk factors for post-operative intra-abdominal abscess after laparoscopic appendectomy: a case-control study
por: Cho, J, et al.
Publicado: (2015) -
PROJECT ADMINISTRATION AGREEMENT KN2438/PH
por: THE EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH, CERN, et al.
Publicado: (2014) -
AbcApp: incidence of intra-abdominal ABsCesses following laparoscopic vs. open APPendectomy in complicated appendicitis
por: Zamaray, Bobby, et al.
Publicado: (2022) -
Extensive Mycobacterium abscessus Pneumonia in an Immunocompetent Infant with No Underlying Lung Pathology
por: Alramadhan, Morouge M., et al.
Publicado: (2021)