Cargando…
Deep learning-based optical field screening for robust optical diffraction tomography
In tomographic reconstruction, the image quality of the reconstructed images can be significantly degraded by defects in the measured two-dimensional (2D) raw image data. Despite the importance of screening defective 2D images for robust tomographic reconstruction, manual inspection and rule-based a...
Autores principales: | Ryu, DongHun, Jo, YoungJu, Yoo, Jihyeong, Chang, Taean, Ahn, Daewoong, Kim, Young Seo, Kim, Geon, Min, Hyun-Seok, Park, YongKeun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6811526/ https://www.ncbi.nlm.nih.gov/pubmed/31645595 http://dx.doi.org/10.1038/s41598-019-51363-x |
Ejemplares similares
-
Three-dimensional label-free imaging and analysis of Pinus pollen grains using optical diffraction tomography
por: Kim, Geon, et al.
Publicado: (2018) -
Deep learning-based label-free hematology analysis framework using optical diffraction tomography
por: Ryu, Dongmin, et al.
Publicado: (2023) -
Rapid species identification of pathogenic bacteria from a minute quantity exploiting three-dimensional quantitative phase imaging and artificial neural network
por: Kim, Geon, et al.
Publicado: (2022) -
Label-Free White Blood Cell Classification Using Refractive Index Tomography and Deep Learning
por: Ryu, DongHun, et al.
Publicado: (2021) -
Profiling individual human red blood cells using common-path diffraction optical tomography
por: Kim, Youngchan, et al.
Publicado: (2014)