Cargando…

Nanoscale deformation mechanics reveal resilience in nacre of Pinna nobilis shell

The combination of soft nanoscale organic components with inorganic nanograins hierarchically designed by natural organisms results in highly ductile structural materials that can withstand mechanical impact and exhibit high resilience on the macro- and nano-scale. Our investigation of nacre deforma...

Descripción completa

Detalles Bibliográficos
Autores principales: Gim, Jiseok, Schnitzer, Noah, Otter, Laura M., Cui, Yuchi, Motreuil, Sébastien, Marin, Frédéric, Wolf, Stephan E., Jacob, Dorrit E., Misra, Amit, Hovden, Robert
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6811596/
https://www.ncbi.nlm.nih.gov/pubmed/31645557
http://dx.doi.org/10.1038/s41467-019-12743-z
_version_ 1783462497772109824
author Gim, Jiseok
Schnitzer, Noah
Otter, Laura M.
Cui, Yuchi
Motreuil, Sébastien
Marin, Frédéric
Wolf, Stephan E.
Jacob, Dorrit E.
Misra, Amit
Hovden, Robert
author_facet Gim, Jiseok
Schnitzer, Noah
Otter, Laura M.
Cui, Yuchi
Motreuil, Sébastien
Marin, Frédéric
Wolf, Stephan E.
Jacob, Dorrit E.
Misra, Amit
Hovden, Robert
author_sort Gim, Jiseok
collection PubMed
description The combination of soft nanoscale organic components with inorganic nanograins hierarchically designed by natural organisms results in highly ductile structural materials that can withstand mechanical impact and exhibit high resilience on the macro- and nano-scale. Our investigation of nacre deformation reveals the underlying nanomechanics that govern the structural resilience and absorption of mechanical energy. Using high-resolution scanning/transmission electron microscopy (S/TEM) combined with in situ indentation, we observe nanoscale recovery of heavily deformed nacre that restores its mechanical strength on external stimuli up to 80% of its yield strength. Under compression, nacre undergoes deformation of nanograins and non-destructive locking across organic interfaces such that adjacent inorganic tablets structurally join. The locked tablets respond to strain as a continuous material, yet the organic boundaries between them still restrict crack propagation. Remarkably, the completely locked interface recovers its original morphology without any noticeable deformation after compressive contact stresses as large as 1.2 GPa.
format Online
Article
Text
id pubmed-6811596
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-68115962019-10-25 Nanoscale deformation mechanics reveal resilience in nacre of Pinna nobilis shell Gim, Jiseok Schnitzer, Noah Otter, Laura M. Cui, Yuchi Motreuil, Sébastien Marin, Frédéric Wolf, Stephan E. Jacob, Dorrit E. Misra, Amit Hovden, Robert Nat Commun Article The combination of soft nanoscale organic components with inorganic nanograins hierarchically designed by natural organisms results in highly ductile structural materials that can withstand mechanical impact and exhibit high resilience on the macro- and nano-scale. Our investigation of nacre deformation reveals the underlying nanomechanics that govern the structural resilience and absorption of mechanical energy. Using high-resolution scanning/transmission electron microscopy (S/TEM) combined with in situ indentation, we observe nanoscale recovery of heavily deformed nacre that restores its mechanical strength on external stimuli up to 80% of its yield strength. Under compression, nacre undergoes deformation of nanograins and non-destructive locking across organic interfaces such that adjacent inorganic tablets structurally join. The locked tablets respond to strain as a continuous material, yet the organic boundaries between them still restrict crack propagation. Remarkably, the completely locked interface recovers its original morphology without any noticeable deformation after compressive contact stresses as large as 1.2 GPa. Nature Publishing Group UK 2019-10-23 /pmc/articles/PMC6811596/ /pubmed/31645557 http://dx.doi.org/10.1038/s41467-019-12743-z Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Gim, Jiseok
Schnitzer, Noah
Otter, Laura M.
Cui, Yuchi
Motreuil, Sébastien
Marin, Frédéric
Wolf, Stephan E.
Jacob, Dorrit E.
Misra, Amit
Hovden, Robert
Nanoscale deformation mechanics reveal resilience in nacre of Pinna nobilis shell
title Nanoscale deformation mechanics reveal resilience in nacre of Pinna nobilis shell
title_full Nanoscale deformation mechanics reveal resilience in nacre of Pinna nobilis shell
title_fullStr Nanoscale deformation mechanics reveal resilience in nacre of Pinna nobilis shell
title_full_unstemmed Nanoscale deformation mechanics reveal resilience in nacre of Pinna nobilis shell
title_short Nanoscale deformation mechanics reveal resilience in nacre of Pinna nobilis shell
title_sort nanoscale deformation mechanics reveal resilience in nacre of pinna nobilis shell
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6811596/
https://www.ncbi.nlm.nih.gov/pubmed/31645557
http://dx.doi.org/10.1038/s41467-019-12743-z
work_keys_str_mv AT gimjiseok nanoscaledeformationmechanicsrevealresilienceinnacreofpinnanobilisshell
AT schnitzernoah nanoscaledeformationmechanicsrevealresilienceinnacreofpinnanobilisshell
AT otterlauram nanoscaledeformationmechanicsrevealresilienceinnacreofpinnanobilisshell
AT cuiyuchi nanoscaledeformationmechanicsrevealresilienceinnacreofpinnanobilisshell
AT motreuilsebastien nanoscaledeformationmechanicsrevealresilienceinnacreofpinnanobilisshell
AT marinfrederic nanoscaledeformationmechanicsrevealresilienceinnacreofpinnanobilisshell
AT wolfstephane nanoscaledeformationmechanicsrevealresilienceinnacreofpinnanobilisshell
AT jacobdorrite nanoscaledeformationmechanicsrevealresilienceinnacreofpinnanobilisshell
AT misraamit nanoscaledeformationmechanicsrevealresilienceinnacreofpinnanobilisshell
AT hovdenrobert nanoscaledeformationmechanicsrevealresilienceinnacreofpinnanobilisshell