Cargando…
Impact of Synaptic Device Variations on Classification Accuracy in a Binarized Neural Network
Brain-inspired neuromorphic systems (hardware neural networks) are expected to be an energy-efficient computing architecture for solving cognitive tasks, which critically depend on the development of reliable synaptic weight storage (i.e., synaptic device). Although various nanoelectronic devices ha...
Autores principales: | Kim, Sungho, Kim, Hee-Dong, Choi, Sung-Jin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6811618/ https://www.ncbi.nlm.nih.gov/pubmed/31645636 http://dx.doi.org/10.1038/s41598-019-51814-5 |
Ejemplares similares
-
Binarized Neural Network with Silicon Nanosheet Synaptic Transistors for Supervised Pattern Classification
por: Kim, Sungho, et al.
Publicado: (2019) -
Impact of Synaptic Device Variations on Pattern Recognition Accuracy in a Hardware Neural Network
por: Kim, Sungho, et al.
Publicado: (2018) -
Synaptic metaplasticity in binarized neural networks
por: Laborieux, Axel, et al.
Publicado: (2021) -
A storage-efficient ensemble classification using filter sharing on binarized convolutional neural networks
por: Kim, HyunJin, et al.
Publicado: (2022) -
Pre-Computing Batch Normalisation Parameters for Edge Devices on a Binarized Neural Network
por: Phipps, Nicholas, et al.
Publicado: (2023)