Cargando…

A new class of nonreciprocal spin waves on the edges of 2D antiferromagnetic honeycomb nanoribbons

Antiferromagnetic two-dimensional (2D) materials are currently under intensive theoretical and experimental investigations in view of their potential applications in antiferromagnet-based magnonic and spintronic devices. Recent experimental studies revealed the importance of magnetic anisotropy and...

Descripción completa

Detalles Bibliográficos
Autores principales: Ghader, D., Khater, A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6811631/
https://www.ncbi.nlm.nih.gov/pubmed/31645589
http://dx.doi.org/10.1038/s41598-019-51646-3
Descripción
Sumario:Antiferromagnetic two-dimensional (2D) materials are currently under intensive theoretical and experimental investigations in view of their potential applications in antiferromagnet-based magnonic and spintronic devices. Recent experimental studies revealed the importance of magnetic anisotropy and of Dzyaloshinskii-Moriya interactions (DMI) on the ordered ground state and the magnetic excitations in these materials. In this work we present a robust classical field theory approach to study the effects of anisotropy and the DMI on the edge and bulk spin waves in 2D antiferromagnetic nanoribbons. We predict the existence of a new class of nonreciprocal edge spin waves, characterized by opposite polarizations in counter-propagation. These novel edge spin waves are induced by the DMI and are fundamentally different from conventional nonreciprocal spin waves for which the polarization is independent of the propagation direction. We further analyze the effects of the edge structures on the magnetic excitations for these systems. In particular, we show that anisotropic bearded edge nanoribbons act as topologically trivial magnetic insulators with potentially interesting applications in magnonics. Our results constitute an important finding for current efforts seeking to establish unconventional magnonic devices utilizing spin wave polarization.