Cargando…
Solvent-Free Fabrication of an Elastomeric Epoxy Resin Using Glycol Lignin from Japanese Cedar
[Image: see text] In this study, a simple formulation of softwood-derived glycol lignin (GL)-based epoxy resin with a high GL content of greater than 50 wt % was demonstrated by direct mixing with poly(ethylene glycol) diglycidyl ether (PEGDGE), an aliphatic epoxide, without using any solvent. Becau...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2019
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6811843/ https://www.ncbi.nlm.nih.gov/pubmed/31656899 http://dx.doi.org/10.1021/acsomega.9b01884 |
Sumario: | [Image: see text] In this study, a simple formulation of softwood-derived glycol lignin (GL)-based epoxy resin with a high GL content of greater than 50 wt % was demonstrated by direct mixing with poly(ethylene glycol) diglycidyl ether (PEGDGE), an aliphatic epoxide, without using any solvent. Because the GL powder produced from poly(ethylene glycol) (PEG400) solvolysis of Japanese cedar softwood meal was a PEG400-modified lignin (GL400), a strong affinity between PEG counterparts facilitates the uniform mixing of GL400 with PEGDGE, and one component uncured GL400/PEGDGE epoxy resin was prepared at a relatively lower temperature (100 °C) than the curing temperature (130 °C). The epoxy curing reaction was monitored by (1)H NMR and Fourier transform infrared spectroscopies. The physical and mechanical properties of the epoxy resins with different GL400 contents were then evaluated. The developed resins exhibited good flexibility and elasticity depending on the GL400 content. |
---|