Cargando…
Data on the mechanobiological differences in the transcriptomes of human fetal and adult dermal fibroblasts in response to extracellular matrix rigidity
Fetal skin is known to proceed through the wound healing process without the formation of scar tissue but rather via regeneration. Fetal dermal fibroblasts have emerged as a significant driving force in this regenerative response due to their unique phenotypic characteristics including our recent fi...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6811905/ https://www.ncbi.nlm.nih.gov/pubmed/31667282 http://dx.doi.org/10.1016/j.dib.2019.104519 |
_version_ | 1783462558392385536 |
---|---|
author | Leih, Mitchell J. Ramirez, Marisol A. Jerrell, Rachel J. Parekh, Aron |
author_facet | Leih, Mitchell J. Ramirez, Marisol A. Jerrell, Rachel J. Parekh, Aron |
author_sort | Leih, Mitchell J. |
collection | PubMed |
description | Fetal skin is known to proceed through the wound healing process without the formation of scar tissue but rather via regeneration. Fetal dermal fibroblasts have emerged as a significant driving force in this regenerative response due to their unique phenotypic characteristics including our recent finding of an attenuated contractile response to extracellular matrix (ECM) rigidity that normally contributes to myofibroblast differentiation and scar formation. We provide data here that these mechanobiological differences in fetal dermal fibroblasts also extend to their genetic profile in which we found 353 differentially expressed genes when compared to adult dermal fibroblasts. These data are related to the research article entitled “The altered mechanical phenotype of fetal fibroblasts hinders myofibroblast differentiation” [1]. |
format | Online Article Text |
id | pubmed-6811905 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-68119052019-10-30 Data on the mechanobiological differences in the transcriptomes of human fetal and adult dermal fibroblasts in response to extracellular matrix rigidity Leih, Mitchell J. Ramirez, Marisol A. Jerrell, Rachel J. Parekh, Aron Data Brief Biochemistry, Genetics and Molecular Biology Fetal skin is known to proceed through the wound healing process without the formation of scar tissue but rather via regeneration. Fetal dermal fibroblasts have emerged as a significant driving force in this regenerative response due to their unique phenotypic characteristics including our recent finding of an attenuated contractile response to extracellular matrix (ECM) rigidity that normally contributes to myofibroblast differentiation and scar formation. We provide data here that these mechanobiological differences in fetal dermal fibroblasts also extend to their genetic profile in which we found 353 differentially expressed genes when compared to adult dermal fibroblasts. These data are related to the research article entitled “The altered mechanical phenotype of fetal fibroblasts hinders myofibroblast differentiation” [1]. Elsevier 2019-09-18 /pmc/articles/PMC6811905/ /pubmed/31667282 http://dx.doi.org/10.1016/j.dib.2019.104519 Text en © 2019 The Author(s) http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Biochemistry, Genetics and Molecular Biology Leih, Mitchell J. Ramirez, Marisol A. Jerrell, Rachel J. Parekh, Aron Data on the mechanobiological differences in the transcriptomes of human fetal and adult dermal fibroblasts in response to extracellular matrix rigidity |
title | Data on the mechanobiological differences in the transcriptomes of human fetal and adult dermal fibroblasts in response to extracellular matrix rigidity |
title_full | Data on the mechanobiological differences in the transcriptomes of human fetal and adult dermal fibroblasts in response to extracellular matrix rigidity |
title_fullStr | Data on the mechanobiological differences in the transcriptomes of human fetal and adult dermal fibroblasts in response to extracellular matrix rigidity |
title_full_unstemmed | Data on the mechanobiological differences in the transcriptomes of human fetal and adult dermal fibroblasts in response to extracellular matrix rigidity |
title_short | Data on the mechanobiological differences in the transcriptomes of human fetal and adult dermal fibroblasts in response to extracellular matrix rigidity |
title_sort | data on the mechanobiological differences in the transcriptomes of human fetal and adult dermal fibroblasts in response to extracellular matrix rigidity |
topic | Biochemistry, Genetics and Molecular Biology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6811905/ https://www.ncbi.nlm.nih.gov/pubmed/31667282 http://dx.doi.org/10.1016/j.dib.2019.104519 |
work_keys_str_mv | AT leihmitchellj dataonthemechanobiologicaldifferencesinthetranscriptomesofhumanfetalandadultdermalfibroblastsinresponsetoextracellularmatrixrigidity AT ramirezmarisola dataonthemechanobiologicaldifferencesinthetranscriptomesofhumanfetalandadultdermalfibroblastsinresponsetoextracellularmatrixrigidity AT jerrellrachelj dataonthemechanobiologicaldifferencesinthetranscriptomesofhumanfetalandadultdermalfibroblastsinresponsetoextracellularmatrixrigidity AT parekharon dataonthemechanobiologicaldifferencesinthetranscriptomesofhumanfetalandadultdermalfibroblastsinresponsetoextracellularmatrixrigidity |