Cargando…
Triplet Deep Hashing with Joint Supervised Loss Based on Deep Neural Networks
In recent years, with the explosion of multimedia data from search engines, social media, and e-commerce platforms, there is an urgent need for fast retrieval methods for massive big data. Hashing is widely used in large-scale and high-dimensional data search because of its low storage cost and fast...
Autores principales: | Li, Mingyong, An, Ziye, Wei, Qinmin, Xiang, Kaiyue, Ma, Yan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6811991/ https://www.ncbi.nlm.nih.gov/pubmed/31687007 http://dx.doi.org/10.1155/2019/8490364 |
Ejemplares similares
-
Deep supervised hashing for gait retrieval
por: Sayeed, Shohel, et al.
Publicado: (2022) -
An Efficient Supervised Deep Hashing Method for Image Retrieval
por: Hussain, Abid, et al.
Publicado: (2022) -
Dual Attention Triplet Hashing Network for Image Retrieval
por: Jiang, Zhukai, et al.
Publicado: (2021) -
A Supervised Video Hashing Method Based on a Deep 3D Convolutional Neural Network for Large-Scale Video Retrieval
por: Chen, Hanqing, et al.
Publicado: (2021) -
Deep Unsupervised Hashing for Large-Scale Cross-Modal Retrieval Using Knowledge Distillation Model
por: Li, Mingyong, et al.
Publicado: (2021)