Cargando…

Spatio-temporal dataset of building occupants

The paper presents spatio-temporal dataset of building occupants captured using 200 Bluetooth Low Energy (BLE) beacons installed on different locations in two buildings. It contains 8426 data points of 11 building occupants collected with a sampling rate of 5 seconds during different times in a 12 d...

Descripción completa

Detalles Bibliográficos
Autores principales: Arslan, Muhammad, Cruz, Christophe, Ginhac, Dominique
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6812040/
https://www.ncbi.nlm.nih.gov/pubmed/31667316
http://dx.doi.org/10.1016/j.dib.2019.104598
_version_ 1783462591318720512
author Arslan, Muhammad
Cruz, Christophe
Ginhac, Dominique
author_facet Arslan, Muhammad
Cruz, Christophe
Ginhac, Dominique
author_sort Arslan, Muhammad
collection PubMed
description The paper presents spatio-temporal dataset of building occupants captured using 200 Bluetooth Low Energy (BLE) beacons installed on different locations in two buildings. It contains 8426 data points of 11 building occupants collected with a sampling rate of 5 seconds during different times in a 12 days' interval. Each spatio-temporal data point comprises location and time components correspond to a building location which can be visualized using an OpenStreetMap (OSM) file of a building.
format Online
Article
Text
id pubmed-6812040
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-68120402019-10-30 Spatio-temporal dataset of building occupants Arslan, Muhammad Cruz, Christophe Ginhac, Dominique Data Brief Computer Science The paper presents spatio-temporal dataset of building occupants captured using 200 Bluetooth Low Energy (BLE) beacons installed on different locations in two buildings. It contains 8426 data points of 11 building occupants collected with a sampling rate of 5 seconds during different times in a 12 days' interval. Each spatio-temporal data point comprises location and time components correspond to a building location which can be visualized using an OpenStreetMap (OSM) file of a building. Elsevier 2019-10-10 /pmc/articles/PMC6812040/ /pubmed/31667316 http://dx.doi.org/10.1016/j.dib.2019.104598 Text en © 2019 The Author(s) http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Computer Science
Arslan, Muhammad
Cruz, Christophe
Ginhac, Dominique
Spatio-temporal dataset of building occupants
title Spatio-temporal dataset of building occupants
title_full Spatio-temporal dataset of building occupants
title_fullStr Spatio-temporal dataset of building occupants
title_full_unstemmed Spatio-temporal dataset of building occupants
title_short Spatio-temporal dataset of building occupants
title_sort spatio-temporal dataset of building occupants
topic Computer Science
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6812040/
https://www.ncbi.nlm.nih.gov/pubmed/31667316
http://dx.doi.org/10.1016/j.dib.2019.104598
work_keys_str_mv AT arslanmuhammad spatiotemporaldatasetofbuildingoccupants
AT cruzchristophe spatiotemporaldatasetofbuildingoccupants
AT ginhacdominique spatiotemporaldatasetofbuildingoccupants