Cargando…
Spatio-temporal dataset of building occupants
The paper presents spatio-temporal dataset of building occupants captured using 200 Bluetooth Low Energy (BLE) beacons installed on different locations in two buildings. It contains 8426 data points of 11 building occupants collected with a sampling rate of 5 seconds during different times in a 12 d...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6812040/ https://www.ncbi.nlm.nih.gov/pubmed/31667316 http://dx.doi.org/10.1016/j.dib.2019.104598 |
_version_ | 1783462591318720512 |
---|---|
author | Arslan, Muhammad Cruz, Christophe Ginhac, Dominique |
author_facet | Arslan, Muhammad Cruz, Christophe Ginhac, Dominique |
author_sort | Arslan, Muhammad |
collection | PubMed |
description | The paper presents spatio-temporal dataset of building occupants captured using 200 Bluetooth Low Energy (BLE) beacons installed on different locations in two buildings. It contains 8426 data points of 11 building occupants collected with a sampling rate of 5 seconds during different times in a 12 days' interval. Each spatio-temporal data point comprises location and time components correspond to a building location which can be visualized using an OpenStreetMap (OSM) file of a building. |
format | Online Article Text |
id | pubmed-6812040 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-68120402019-10-30 Spatio-temporal dataset of building occupants Arslan, Muhammad Cruz, Christophe Ginhac, Dominique Data Brief Computer Science The paper presents spatio-temporal dataset of building occupants captured using 200 Bluetooth Low Energy (BLE) beacons installed on different locations in two buildings. It contains 8426 data points of 11 building occupants collected with a sampling rate of 5 seconds during different times in a 12 days' interval. Each spatio-temporal data point comprises location and time components correspond to a building location which can be visualized using an OpenStreetMap (OSM) file of a building. Elsevier 2019-10-10 /pmc/articles/PMC6812040/ /pubmed/31667316 http://dx.doi.org/10.1016/j.dib.2019.104598 Text en © 2019 The Author(s) http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Computer Science Arslan, Muhammad Cruz, Christophe Ginhac, Dominique Spatio-temporal dataset of building occupants |
title | Spatio-temporal dataset of building occupants |
title_full | Spatio-temporal dataset of building occupants |
title_fullStr | Spatio-temporal dataset of building occupants |
title_full_unstemmed | Spatio-temporal dataset of building occupants |
title_short | Spatio-temporal dataset of building occupants |
title_sort | spatio-temporal dataset of building occupants |
topic | Computer Science |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6812040/ https://www.ncbi.nlm.nih.gov/pubmed/31667316 http://dx.doi.org/10.1016/j.dib.2019.104598 |
work_keys_str_mv | AT arslanmuhammad spatiotemporaldatasetofbuildingoccupants AT cruzchristophe spatiotemporaldatasetofbuildingoccupants AT ginhacdominique spatiotemporaldatasetofbuildingoccupants |