Cargando…
Machine-learning-based classification between post-traumatic stress disorder and major depressive disorder using P300 features
BACKGROUND: The development of optimal classification criteria for specific mental disorders which share similar symptoms is an important issue for precise diagnosis. We investigated whether P300 features in both sensor-level and source-level could be effectively used to classify post-traumatic stre...
Autores principales: | Shim, Miseon, Jin, Min Jin, Im, Chang-Hwan, Lee, Seung-Hwan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6812119/ https://www.ncbi.nlm.nih.gov/pubmed/31627171 http://dx.doi.org/10.1016/j.nicl.2019.102001 |
Ejemplares similares
-
Altered cortical functional network in major depressive disorder: A resting-state electroencephalogram study
por: Shim, Miseon, et al.
Publicado: (2018) -
Enhanced Performance by Interpretable Low-Frequency Electroencephalogram Oscillations in the Machine Learning-Based Diagnosis of Post-traumatic Stress Disorder
por: Shim, Miseon, et al.
Publicado: (2022) -
Impaired functional cortical networks in the theta frequency band of patients with post-traumatic stress disorder during auditory-cognitive processing
por: Shim, Miseon, et al.
Publicado: (2022) -
Comparative Study of Heart Rate Variability in Patients with Schizophrenia, Bipolar Disorder, Post-traumatic Stress Disorder, or Major Depressive Disorder
por: Moon, Eunok, et al.
Publicado: (2013) -
Serum Levels of Tumor Necrosis Factor-α and Loudness Dependence of Auditory Evoked Potentials at Pretreatment and Posttreatment in Patients with Major Depressive Disorder
por: Lee, Bun-Hee, et al.
Publicado: (2019)