Cargando…

A spatiotemporal land-use-regression model to assess individual level long-term exposure to ambient fine particulate matters

We aimed to establish a spatiotemporal land-use-regression (ST-LUR) model assessing individual level long-term exposure to fine particulate matters (PM(2.5)) among 6627 adults enrolled in Guangdong province, China from 2015 to 2016. We collected weekly average PM(2.5) concentration (from the air qua...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Tao, Xiao, Jianpeng, Zeng, Weilin, Hu, Jianxiong, Liu, Xin, Dong, Moran, Wang, Jiaqi, Wan, Donghua, Ma, Wenjun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6812337/
https://www.ncbi.nlm.nih.gov/pubmed/31667108
http://dx.doi.org/10.1016/j.mex.2019.09.009
_version_ 1783462640158244864
author Liu, Tao
Xiao, Jianpeng
Zeng, Weilin
Hu, Jianxiong
Liu, Xin
Dong, Moran
Wang, Jiaqi
Wan, Donghua
Ma, Wenjun
author_facet Liu, Tao
Xiao, Jianpeng
Zeng, Weilin
Hu, Jianxiong
Liu, Xin
Dong, Moran
Wang, Jiaqi
Wan, Donghua
Ma, Wenjun
author_sort Liu, Tao
collection PubMed
description We aimed to establish a spatiotemporal land-use-regression (ST-LUR) model assessing individual level long-term exposure to fine particulate matters (PM(2.5)) among 6627 adults enrolled in Guangdong province, China from 2015 to 2016. We collected weekly average PM(2.5) concentration (from the air quality monitoring stations) and visibility, population density, road density and types of land use of each air quality monitoring station and participant’s residential address from April 2013 to December 2016. A ST-LUR model was established using these spatiotemporal data, and was employed to estimate the weekly average PM(2.5) concentration of each individual residential address. Data analysis was carried out by R software (version 3.5.1) and the SpatioTemporal package was used. The results showed that the ST-LUR model applying the land use data extracted using a buffer radius of 1300 m had the best modelling fitness. The results of 10-fold cross validation showed that the R(2) was 88.86% and the RMSE (Root mean square error) was 5.65 μg/m(3). The two-year average of PM(2.5) prior to the date of investigation were calculated for each participant. This study provided a novel method to precisely assess individual level long-term exposure to ambient PM(2.5), which may extend our understanding on the health impacts of air pollution. • Variables input in the spatiotemporal land-use-regression (ST-LUR) model include visibility, population density, road density, and types of land use. • The land use data should be extracted using a buffer radius of 1300 m. • The R(2) of the ST-LUR model was 88.86% and the RMSE was 5.65 μg/m(3), indicating the good performance of the model.
format Online
Article
Text
id pubmed-6812337
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-68123372019-10-30 A spatiotemporal land-use-regression model to assess individual level long-term exposure to ambient fine particulate matters Liu, Tao Xiao, Jianpeng Zeng, Weilin Hu, Jianxiong Liu, Xin Dong, Moran Wang, Jiaqi Wan, Donghua Ma, Wenjun MethodsX Environmental Science We aimed to establish a spatiotemporal land-use-regression (ST-LUR) model assessing individual level long-term exposure to fine particulate matters (PM(2.5)) among 6627 adults enrolled in Guangdong province, China from 2015 to 2016. We collected weekly average PM(2.5) concentration (from the air quality monitoring stations) and visibility, population density, road density and types of land use of each air quality monitoring station and participant’s residential address from April 2013 to December 2016. A ST-LUR model was established using these spatiotemporal data, and was employed to estimate the weekly average PM(2.5) concentration of each individual residential address. Data analysis was carried out by R software (version 3.5.1) and the SpatioTemporal package was used. The results showed that the ST-LUR model applying the land use data extracted using a buffer radius of 1300 m had the best modelling fitness. The results of 10-fold cross validation showed that the R(2) was 88.86% and the RMSE (Root mean square error) was 5.65 μg/m(3). The two-year average of PM(2.5) prior to the date of investigation were calculated for each participant. This study provided a novel method to precisely assess individual level long-term exposure to ambient PM(2.5), which may extend our understanding on the health impacts of air pollution. • Variables input in the spatiotemporal land-use-regression (ST-LUR) model include visibility, population density, road density, and types of land use. • The land use data should be extracted using a buffer radius of 1300 m. • The R(2) of the ST-LUR model was 88.86% and the RMSE was 5.65 μg/m(3), indicating the good performance of the model. Elsevier 2019-09-12 /pmc/articles/PMC6812337/ /pubmed/31667108 http://dx.doi.org/10.1016/j.mex.2019.09.009 Text en © 2019 The Authors http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Environmental Science
Liu, Tao
Xiao, Jianpeng
Zeng, Weilin
Hu, Jianxiong
Liu, Xin
Dong, Moran
Wang, Jiaqi
Wan, Donghua
Ma, Wenjun
A spatiotemporal land-use-regression model to assess individual level long-term exposure to ambient fine particulate matters
title A spatiotemporal land-use-regression model to assess individual level long-term exposure to ambient fine particulate matters
title_full A spatiotemporal land-use-regression model to assess individual level long-term exposure to ambient fine particulate matters
title_fullStr A spatiotemporal land-use-regression model to assess individual level long-term exposure to ambient fine particulate matters
title_full_unstemmed A spatiotemporal land-use-regression model to assess individual level long-term exposure to ambient fine particulate matters
title_short A spatiotemporal land-use-regression model to assess individual level long-term exposure to ambient fine particulate matters
title_sort spatiotemporal land-use-regression model to assess individual level long-term exposure to ambient fine particulate matters
topic Environmental Science
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6812337/
https://www.ncbi.nlm.nih.gov/pubmed/31667108
http://dx.doi.org/10.1016/j.mex.2019.09.009
work_keys_str_mv AT liutao aspatiotemporallanduseregressionmodeltoassessindividuallevellongtermexposuretoambientfineparticulatematters
AT xiaojianpeng aspatiotemporallanduseregressionmodeltoassessindividuallevellongtermexposuretoambientfineparticulatematters
AT zengweilin aspatiotemporallanduseregressionmodeltoassessindividuallevellongtermexposuretoambientfineparticulatematters
AT hujianxiong aspatiotemporallanduseregressionmodeltoassessindividuallevellongtermexposuretoambientfineparticulatematters
AT liuxin aspatiotemporallanduseregressionmodeltoassessindividuallevellongtermexposuretoambientfineparticulatematters
AT dongmoran aspatiotemporallanduseregressionmodeltoassessindividuallevellongtermexposuretoambientfineparticulatematters
AT wangjiaqi aspatiotemporallanduseregressionmodeltoassessindividuallevellongtermexposuretoambientfineparticulatematters
AT wandonghua aspatiotemporallanduseregressionmodeltoassessindividuallevellongtermexposuretoambientfineparticulatematters
AT mawenjun aspatiotemporallanduseregressionmodeltoassessindividuallevellongtermexposuretoambientfineparticulatematters
AT liutao spatiotemporallanduseregressionmodeltoassessindividuallevellongtermexposuretoambientfineparticulatematters
AT xiaojianpeng spatiotemporallanduseregressionmodeltoassessindividuallevellongtermexposuretoambientfineparticulatematters
AT zengweilin spatiotemporallanduseregressionmodeltoassessindividuallevellongtermexposuretoambientfineparticulatematters
AT hujianxiong spatiotemporallanduseregressionmodeltoassessindividuallevellongtermexposuretoambientfineparticulatematters
AT liuxin spatiotemporallanduseregressionmodeltoassessindividuallevellongtermexposuretoambientfineparticulatematters
AT dongmoran spatiotemporallanduseregressionmodeltoassessindividuallevellongtermexposuretoambientfineparticulatematters
AT wangjiaqi spatiotemporallanduseregressionmodeltoassessindividuallevellongtermexposuretoambientfineparticulatematters
AT wandonghua spatiotemporallanduseregressionmodeltoassessindividuallevellongtermexposuretoambientfineparticulatematters
AT mawenjun spatiotemporallanduseregressionmodeltoassessindividuallevellongtermexposuretoambientfineparticulatematters