Cargando…
A spatiotemporal land-use-regression model to assess individual level long-term exposure to ambient fine particulate matters
We aimed to establish a spatiotemporal land-use-regression (ST-LUR) model assessing individual level long-term exposure to fine particulate matters (PM(2.5)) among 6627 adults enrolled in Guangdong province, China from 2015 to 2016. We collected weekly average PM(2.5) concentration (from the air qua...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6812337/ https://www.ncbi.nlm.nih.gov/pubmed/31667108 http://dx.doi.org/10.1016/j.mex.2019.09.009 |
_version_ | 1783462640158244864 |
---|---|
author | Liu, Tao Xiao, Jianpeng Zeng, Weilin Hu, Jianxiong Liu, Xin Dong, Moran Wang, Jiaqi Wan, Donghua Ma, Wenjun |
author_facet | Liu, Tao Xiao, Jianpeng Zeng, Weilin Hu, Jianxiong Liu, Xin Dong, Moran Wang, Jiaqi Wan, Donghua Ma, Wenjun |
author_sort | Liu, Tao |
collection | PubMed |
description | We aimed to establish a spatiotemporal land-use-regression (ST-LUR) model assessing individual level long-term exposure to fine particulate matters (PM(2.5)) among 6627 adults enrolled in Guangdong province, China from 2015 to 2016. We collected weekly average PM(2.5) concentration (from the air quality monitoring stations) and visibility, population density, road density and types of land use of each air quality monitoring station and participant’s residential address from April 2013 to December 2016. A ST-LUR model was established using these spatiotemporal data, and was employed to estimate the weekly average PM(2.5) concentration of each individual residential address. Data analysis was carried out by R software (version 3.5.1) and the SpatioTemporal package was used. The results showed that the ST-LUR model applying the land use data extracted using a buffer radius of 1300 m had the best modelling fitness. The results of 10-fold cross validation showed that the R(2) was 88.86% and the RMSE (Root mean square error) was 5.65 μg/m(3). The two-year average of PM(2.5) prior to the date of investigation were calculated for each participant. This study provided a novel method to precisely assess individual level long-term exposure to ambient PM(2.5), which may extend our understanding on the health impacts of air pollution. • Variables input in the spatiotemporal land-use-regression (ST-LUR) model include visibility, population density, road density, and types of land use. • The land use data should be extracted using a buffer radius of 1300 m. • The R(2) of the ST-LUR model was 88.86% and the RMSE was 5.65 μg/m(3), indicating the good performance of the model. |
format | Online Article Text |
id | pubmed-6812337 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-68123372019-10-30 A spatiotemporal land-use-regression model to assess individual level long-term exposure to ambient fine particulate matters Liu, Tao Xiao, Jianpeng Zeng, Weilin Hu, Jianxiong Liu, Xin Dong, Moran Wang, Jiaqi Wan, Donghua Ma, Wenjun MethodsX Environmental Science We aimed to establish a spatiotemporal land-use-regression (ST-LUR) model assessing individual level long-term exposure to fine particulate matters (PM(2.5)) among 6627 adults enrolled in Guangdong province, China from 2015 to 2016. We collected weekly average PM(2.5) concentration (from the air quality monitoring stations) and visibility, population density, road density and types of land use of each air quality monitoring station and participant’s residential address from April 2013 to December 2016. A ST-LUR model was established using these spatiotemporal data, and was employed to estimate the weekly average PM(2.5) concentration of each individual residential address. Data analysis was carried out by R software (version 3.5.1) and the SpatioTemporal package was used. The results showed that the ST-LUR model applying the land use data extracted using a buffer radius of 1300 m had the best modelling fitness. The results of 10-fold cross validation showed that the R(2) was 88.86% and the RMSE (Root mean square error) was 5.65 μg/m(3). The two-year average of PM(2.5) prior to the date of investigation were calculated for each participant. This study provided a novel method to precisely assess individual level long-term exposure to ambient PM(2.5), which may extend our understanding on the health impacts of air pollution. • Variables input in the spatiotemporal land-use-regression (ST-LUR) model include visibility, population density, road density, and types of land use. • The land use data should be extracted using a buffer radius of 1300 m. • The R(2) of the ST-LUR model was 88.86% and the RMSE was 5.65 μg/m(3), indicating the good performance of the model. Elsevier 2019-09-12 /pmc/articles/PMC6812337/ /pubmed/31667108 http://dx.doi.org/10.1016/j.mex.2019.09.009 Text en © 2019 The Authors http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Environmental Science Liu, Tao Xiao, Jianpeng Zeng, Weilin Hu, Jianxiong Liu, Xin Dong, Moran Wang, Jiaqi Wan, Donghua Ma, Wenjun A spatiotemporal land-use-regression model to assess individual level long-term exposure to ambient fine particulate matters |
title | A spatiotemporal land-use-regression model to assess individual level long-term exposure to ambient fine particulate matters |
title_full | A spatiotemporal land-use-regression model to assess individual level long-term exposure to ambient fine particulate matters |
title_fullStr | A spatiotemporal land-use-regression model to assess individual level long-term exposure to ambient fine particulate matters |
title_full_unstemmed | A spatiotemporal land-use-regression model to assess individual level long-term exposure to ambient fine particulate matters |
title_short | A spatiotemporal land-use-regression model to assess individual level long-term exposure to ambient fine particulate matters |
title_sort | spatiotemporal land-use-regression model to assess individual level long-term exposure to ambient fine particulate matters |
topic | Environmental Science |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6812337/ https://www.ncbi.nlm.nih.gov/pubmed/31667108 http://dx.doi.org/10.1016/j.mex.2019.09.009 |
work_keys_str_mv | AT liutao aspatiotemporallanduseregressionmodeltoassessindividuallevellongtermexposuretoambientfineparticulatematters AT xiaojianpeng aspatiotemporallanduseregressionmodeltoassessindividuallevellongtermexposuretoambientfineparticulatematters AT zengweilin aspatiotemporallanduseregressionmodeltoassessindividuallevellongtermexposuretoambientfineparticulatematters AT hujianxiong aspatiotemporallanduseregressionmodeltoassessindividuallevellongtermexposuretoambientfineparticulatematters AT liuxin aspatiotemporallanduseregressionmodeltoassessindividuallevellongtermexposuretoambientfineparticulatematters AT dongmoran aspatiotemporallanduseregressionmodeltoassessindividuallevellongtermexposuretoambientfineparticulatematters AT wangjiaqi aspatiotemporallanduseregressionmodeltoassessindividuallevellongtermexposuretoambientfineparticulatematters AT wandonghua aspatiotemporallanduseregressionmodeltoassessindividuallevellongtermexposuretoambientfineparticulatematters AT mawenjun aspatiotemporallanduseregressionmodeltoassessindividuallevellongtermexposuretoambientfineparticulatematters AT liutao spatiotemporallanduseregressionmodeltoassessindividuallevellongtermexposuretoambientfineparticulatematters AT xiaojianpeng spatiotemporallanduseregressionmodeltoassessindividuallevellongtermexposuretoambientfineparticulatematters AT zengweilin spatiotemporallanduseregressionmodeltoassessindividuallevellongtermexposuretoambientfineparticulatematters AT hujianxiong spatiotemporallanduseregressionmodeltoassessindividuallevellongtermexposuretoambientfineparticulatematters AT liuxin spatiotemporallanduseregressionmodeltoassessindividuallevellongtermexposuretoambientfineparticulatematters AT dongmoran spatiotemporallanduseregressionmodeltoassessindividuallevellongtermexposuretoambientfineparticulatematters AT wangjiaqi spatiotemporallanduseregressionmodeltoassessindividuallevellongtermexposuretoambientfineparticulatematters AT wandonghua spatiotemporallanduseregressionmodeltoassessindividuallevellongtermexposuretoambientfineparticulatematters AT mawenjun spatiotemporallanduseregressionmodeltoassessindividuallevellongtermexposuretoambientfineparticulatematters |