Cargando…
The use of classification and regression algorithms using the random forests method with presence-only data to model species’ distribution
Random forests (RF) is a powerful species distribution model (SDM) algorithm. This ensemble model by default can produce categorical and numerical species distribution maps based on its classification tree (CT) and regression tree (RT) algorithms, respectively. The CT algorithm can also produce nume...
Autores principales: | Zhang, Lei, Huettmann, Falk, Zhang, Xudong, Liu, Shirong, Sun, Pengsen, Yu, Zhen, Mi, Chunrong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6812352/ https://www.ncbi.nlm.nih.gov/pubmed/31667128 http://dx.doi.org/10.1016/j.mex.2019.09.035 |
Ejemplares similares
-
Why choose Random Forest to predict rare species distribution with few samples in large undersampled areas? Three Asian crane species models provide supporting evidence
por: Mi, Chunrong, et al.
Publicado: (2017) -
Climate envelope predictions indicate an enlarged suitable wintering distribution for Great Bustards (Otis tarda dybowskii) in China for the 21st century
por: Mi, Chunrong, et al.
Publicado: (2016) -
Combining occurrence and abundance distribution models for the conservation of the Great Bustard
por: Mi, Chunrong, et al.
Publicado: (2017) -
Phylogenetic analysis on the soil bacteria distributed in karst forest
por: Zhou, JunPei, et al.
Publicado: (2009) -
Consensus Forecasting of Species Distributions: The Effects of Niche Model Performance and Niche Properties
por: Zhang, Lei, et al.
Publicado: (2015)