Cargando…

Determination of contact force by compression testing of cylindrical specimens

This paper presents a method for determining values of dynamic parameters of the Hunt and Crossley model in order to estimate the amount of force generated at the point of contact (contact force) in an impact. A two-degree-of-freedom lumped-mass-system based on a non-linear visco-elastic model as pr...

Descripción completa

Detalles Bibliográficos
Autores principales: Majeed, Zireen Z.A., Lam, Nelson T.K., Lam, Carlos, Gad, Emad, Kwan, Julian S.H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6812404/
https://www.ncbi.nlm.nih.gov/pubmed/31667092
http://dx.doi.org/10.1016/j.mex.2019.08.020
Descripción
Sumario:This paper presents a method for determining values of dynamic parameters of the Hunt and Crossley model in order to estimate the amount of force generated at the point of contact (contact force) in an impact. A two-degree-of-freedom lumped-mass-system based on a non-linear visco-elastic model as proposed by Hunt and Crossley has been widely used to accurately model contact force. The primary difficulty associated with the Hunt and Crossley contact force model is the need to determine the unknown dynamic parameters of the model, which can be obtained by calibrating the model against results from high-speed impact experiments. Spherical impactors have to be placed in the gas-gun barrel for accelerating onto the target specimen. An innovative and inexpensive method proposed in this paper describes the use of compression testing on a test rig employing cylindrical specimens of colliding bodies to obtain the dynamic parameters thereby waiving away the need of costly and time-consuming impact experiments.