Cargando…
3D printing of silk fibroin-based hybrid scaffold treated with platelet rich plasma for bone tissue engineering
3D printing/bioprinting are promising techniques to fabricate scaffolds with well controlled and patient-specific structures and architectures for bone tissue engineering. In this study, we developed a composite bioink consisting of silk fibroin (SF), gelatin (GEL), hyaluronic acid (HA), and tricalc...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
KeAi Publishing
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6812411/ https://www.ncbi.nlm.nih.gov/pubmed/31667442 http://dx.doi.org/10.1016/j.bioactmat.2019.09.001 |
_version_ | 1783462654147297280 |
---|---|
author | Wei, Liang Wu, Shaohua Kuss, Mitchell Jiang, Xiping Sun, Runjun Reid, Patrick Qin, Xiaohong Duan, Bin |
author_facet | Wei, Liang Wu, Shaohua Kuss, Mitchell Jiang, Xiping Sun, Runjun Reid, Patrick Qin, Xiaohong Duan, Bin |
author_sort | Wei, Liang |
collection | PubMed |
description | 3D printing/bioprinting are promising techniques to fabricate scaffolds with well controlled and patient-specific structures and architectures for bone tissue engineering. In this study, we developed a composite bioink consisting of silk fibroin (SF), gelatin (GEL), hyaluronic acid (HA), and tricalcium phosphate (TCP) and 3D bioprinted the silk fibroin-based hybrid scaffolds. The 3D bioprinted scaffolds with dual crosslinking were further treated with human platelet-rich plasma (PRP) to generate PRP coated scaffolds. Live/Dead and MTT assays demonstrated that PRP treatment could obviously promote the cell growth and proliferation of human adipose derived mesenchymal stem cells (HADMSC). In addition, the treatment of PRP did not significantly affect alkaline phosphatase (ALP) activity and expression, but significantly upregulated the gene expression levels of late osteogenic markers. This study demonstrated that the 3D printing of silk fibroin-based hybrid scaffolds, in combination with PRP post-treatment, might be a more efficient strategy to promote osteogenic differentiation of adult stem cells and has significant potential to be used for bone tissue engineering. |
format | Online Article Text |
id | pubmed-6812411 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | KeAi Publishing |
record_format | MEDLINE/PubMed |
spelling | pubmed-68124112019-10-30 3D printing of silk fibroin-based hybrid scaffold treated with platelet rich plasma for bone tissue engineering Wei, Liang Wu, Shaohua Kuss, Mitchell Jiang, Xiping Sun, Runjun Reid, Patrick Qin, Xiaohong Duan, Bin Bioact Mater Article 3D printing/bioprinting are promising techniques to fabricate scaffolds with well controlled and patient-specific structures and architectures for bone tissue engineering. In this study, we developed a composite bioink consisting of silk fibroin (SF), gelatin (GEL), hyaluronic acid (HA), and tricalcium phosphate (TCP) and 3D bioprinted the silk fibroin-based hybrid scaffolds. The 3D bioprinted scaffolds with dual crosslinking were further treated with human platelet-rich plasma (PRP) to generate PRP coated scaffolds. Live/Dead and MTT assays demonstrated that PRP treatment could obviously promote the cell growth and proliferation of human adipose derived mesenchymal stem cells (HADMSC). In addition, the treatment of PRP did not significantly affect alkaline phosphatase (ALP) activity and expression, but significantly upregulated the gene expression levels of late osteogenic markers. This study demonstrated that the 3D printing of silk fibroin-based hybrid scaffolds, in combination with PRP post-treatment, might be a more efficient strategy to promote osteogenic differentiation of adult stem cells and has significant potential to be used for bone tissue engineering. KeAi Publishing 2019-09-25 /pmc/articles/PMC6812411/ /pubmed/31667442 http://dx.doi.org/10.1016/j.bioactmat.2019.09.001 Text en © Dick Holland Regenerative Medicine Program, Division of Cardiology, Department of Internal Medicine, University of Nebraska. http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Wei, Liang Wu, Shaohua Kuss, Mitchell Jiang, Xiping Sun, Runjun Reid, Patrick Qin, Xiaohong Duan, Bin 3D printing of silk fibroin-based hybrid scaffold treated with platelet rich plasma for bone tissue engineering |
title | 3D printing of silk fibroin-based hybrid scaffold treated with platelet rich plasma for bone tissue engineering |
title_full | 3D printing of silk fibroin-based hybrid scaffold treated with platelet rich plasma for bone tissue engineering |
title_fullStr | 3D printing of silk fibroin-based hybrid scaffold treated with platelet rich plasma for bone tissue engineering |
title_full_unstemmed | 3D printing of silk fibroin-based hybrid scaffold treated with platelet rich plasma for bone tissue engineering |
title_short | 3D printing of silk fibroin-based hybrid scaffold treated with platelet rich plasma for bone tissue engineering |
title_sort | 3d printing of silk fibroin-based hybrid scaffold treated with platelet rich plasma for bone tissue engineering |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6812411/ https://www.ncbi.nlm.nih.gov/pubmed/31667442 http://dx.doi.org/10.1016/j.bioactmat.2019.09.001 |
work_keys_str_mv | AT weiliang 3dprintingofsilkfibroinbasedhybridscaffoldtreatedwithplateletrichplasmaforbonetissueengineering AT wushaohua 3dprintingofsilkfibroinbasedhybridscaffoldtreatedwithplateletrichplasmaforbonetissueengineering AT kussmitchell 3dprintingofsilkfibroinbasedhybridscaffoldtreatedwithplateletrichplasmaforbonetissueengineering AT jiangxiping 3dprintingofsilkfibroinbasedhybridscaffoldtreatedwithplateletrichplasmaforbonetissueengineering AT sunrunjun 3dprintingofsilkfibroinbasedhybridscaffoldtreatedwithplateletrichplasmaforbonetissueengineering AT reidpatrick 3dprintingofsilkfibroinbasedhybridscaffoldtreatedwithplateletrichplasmaforbonetissueengineering AT qinxiaohong 3dprintingofsilkfibroinbasedhybridscaffoldtreatedwithplateletrichplasmaforbonetissueengineering AT duanbin 3dprintingofsilkfibroinbasedhybridscaffoldtreatedwithplateletrichplasmaforbonetissueengineering |