Cargando…

Key challenges facing data-driven multicellular systems biology

Increasingly sophisticated experiments, coupled with large-scale computational models, have the potential to systematically test biological hypotheses to drive our understanding of multicellular systems. In this short review, we explore key challenges that must be overcome to achieve robust, repeata...

Descripción completa

Detalles Bibliográficos
Autor principal: Macklin, Paul
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6812467/
https://www.ncbi.nlm.nih.gov/pubmed/31648301
http://dx.doi.org/10.1093/gigascience/giz127
Descripción
Sumario:Increasingly sophisticated experiments, coupled with large-scale computational models, have the potential to systematically test biological hypotheses to drive our understanding of multicellular systems. In this short review, we explore key challenges that must be overcome to achieve robust, repeatable data-driven multicellular systems biology. If these challenges can be solved, we can grow beyond the current state of isolated tools and datasets to a community-driven ecosystem of interoperable data, software utilities, and computational modeling platforms. Progress is within our grasp, but it will take community (and financial) commitment.