Cargando…
3508 Ciclopirox Olamine Demonstrates Inhibitory Effects on Esophageal Tumor Cells
OBJECTIVES/SPECIFIC AIMS: Drug repositioning has the potential to accelerate translation of novel cancer chemotherapeutics from bench to bedside. The goal of this study was to determine the effects of ciclopirox olamine (CPX) on esophageal tumor cells. METHODS/STUDY POPULATION: We tested the effect...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cambridge University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6812875/ http://dx.doi.org/10.1017/cts.2019.15 |
_version_ | 1783462730999529472 |
---|---|
author | Ryan, Randi Anant, Shrikant Ramamoorthy, Prabhu Subramaniam, Dharmalingam Weir, Scott |
author_facet | Ryan, Randi Anant, Shrikant Ramamoorthy, Prabhu Subramaniam, Dharmalingam Weir, Scott |
author_sort | Ryan, Randi |
collection | PubMed |
description | OBJECTIVES/SPECIFIC AIMS: Drug repositioning has the potential to accelerate translation of novel cancer chemotherapeutics from bench to bedside. The goal of this study was to determine the effects of ciclopirox olamine (CPX) on esophageal tumor cells. METHODS/STUDY POPULATION: We tested the effect of CPX on four esophageal cancer cell lines, assessing cell proliferation and viability by hexosaminidase and clonogenicity assay, respectively. We analyzed the effects of CPX on three-dimensional (3D) esophageal tumor cell spheroids. We also analyzed effects on cell cycle by flow cytometry. For mechanism, we performed western blots for proteins involved in cell cycle regulation, apoptosis and the Wnt/β-catenin pathway. For in vivo effects, we performed a murine xenograft model with intraperitoneal administration of CPX (100 mg/Kg body weight daily). RESULTS/ANTICIPATED RESULTS: CPX inhibited growth of all cell lines in a time and concentration-dependent manner. CPX also inhibited growth of esophageal spheroids. Cell cycle analysis demonstrated G0/G1 arrest in cells treated with CPX. Western blot analyses demonstrated decreased expression of cyclinD1, CDK4, CDK6, and transcriptionally active β-catenin, supporting the role of CPX in cell cycle inhibition and decreased β-catenin activity. Finally, treatment of nude mice with CPX significantly decreased tumor xenograft volume. DISCUSSION/SIGNIFICANCE OF IMPACT: CPX demonstrates anti-tumor properties in esophageal cancer cell lines. The current results justify further research into the mechanism of this inhibition. Additionally, given its established safety in humans, CPX is a potential candidate for repositioning as an adjunct treatment for esophageal cancer. |
format | Online Article Text |
id | pubmed-6812875 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Cambridge University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-68128752019-10-28 3508 Ciclopirox Olamine Demonstrates Inhibitory Effects on Esophageal Tumor Cells Ryan, Randi Anant, Shrikant Ramamoorthy, Prabhu Subramaniam, Dharmalingam Weir, Scott J Clin Transl Sci Basic/Translational Science/Team Science OBJECTIVES/SPECIFIC AIMS: Drug repositioning has the potential to accelerate translation of novel cancer chemotherapeutics from bench to bedside. The goal of this study was to determine the effects of ciclopirox olamine (CPX) on esophageal tumor cells. METHODS/STUDY POPULATION: We tested the effect of CPX on four esophageal cancer cell lines, assessing cell proliferation and viability by hexosaminidase and clonogenicity assay, respectively. We analyzed the effects of CPX on three-dimensional (3D) esophageal tumor cell spheroids. We also analyzed effects on cell cycle by flow cytometry. For mechanism, we performed western blots for proteins involved in cell cycle regulation, apoptosis and the Wnt/β-catenin pathway. For in vivo effects, we performed a murine xenograft model with intraperitoneal administration of CPX (100 mg/Kg body weight daily). RESULTS/ANTICIPATED RESULTS: CPX inhibited growth of all cell lines in a time and concentration-dependent manner. CPX also inhibited growth of esophageal spheroids. Cell cycle analysis demonstrated G0/G1 arrest in cells treated with CPX. Western blot analyses demonstrated decreased expression of cyclinD1, CDK4, CDK6, and transcriptionally active β-catenin, supporting the role of CPX in cell cycle inhibition and decreased β-catenin activity. Finally, treatment of nude mice with CPX significantly decreased tumor xenograft volume. DISCUSSION/SIGNIFICANCE OF IMPACT: CPX demonstrates anti-tumor properties in esophageal cancer cell lines. The current results justify further research into the mechanism of this inhibition. Additionally, given its established safety in humans, CPX is a potential candidate for repositioning as an adjunct treatment for esophageal cancer. Cambridge University Press 2019-03-27 /pmc/articles/PMC6812875/ http://dx.doi.org/10.1017/cts.2019.15 Text en © The Association for Clinical and Translational Science 2019 http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-ncnd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work. |
spellingShingle | Basic/Translational Science/Team Science Ryan, Randi Anant, Shrikant Ramamoorthy, Prabhu Subramaniam, Dharmalingam Weir, Scott 3508 Ciclopirox Olamine Demonstrates Inhibitory Effects on Esophageal Tumor Cells |
title | 3508 Ciclopirox Olamine Demonstrates Inhibitory Effects on Esophageal Tumor Cells |
title_full | 3508 Ciclopirox Olamine Demonstrates Inhibitory Effects on Esophageal Tumor Cells |
title_fullStr | 3508 Ciclopirox Olamine Demonstrates Inhibitory Effects on Esophageal Tumor Cells |
title_full_unstemmed | 3508 Ciclopirox Olamine Demonstrates Inhibitory Effects on Esophageal Tumor Cells |
title_short | 3508 Ciclopirox Olamine Demonstrates Inhibitory Effects on Esophageal Tumor Cells |
title_sort | 3508 ciclopirox olamine demonstrates inhibitory effects on esophageal tumor cells |
topic | Basic/Translational Science/Team Science |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6812875/ http://dx.doi.org/10.1017/cts.2019.15 |
work_keys_str_mv | AT ryanrandi 3508ciclopiroxolaminedemonstratesinhibitoryeffectsonesophagealtumorcells AT anantshrikant 3508ciclopiroxolaminedemonstratesinhibitoryeffectsonesophagealtumorcells AT ramamoorthyprabhu 3508ciclopiroxolaminedemonstratesinhibitoryeffectsonesophagealtumorcells AT subramaniamdharmalingam 3508ciclopiroxolaminedemonstratesinhibitoryeffectsonesophagealtumorcells AT weirscott 3508ciclopiroxolaminedemonstratesinhibitoryeffectsonesophagealtumorcells |