Cargando…

Occurence of microplastics in the hyporheic zone of rivers

Although recent studies indicate that fluvial systems can be accumulation areas for microplastics (MPs), the common perception still treats rivers and streams primarily as pure transport vectors for MPs. In this study we investigate the occurrence of MPs in a yet unnoticed but essential compartment...

Descripción completa

Detalles Bibliográficos
Autores principales: Frei, S., Piehl, S., Gilfedder, B. S., Löder, M. G. J., Krutzke, J., Wilhelm, L., Laforsch, C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6813303/
https://www.ncbi.nlm.nih.gov/pubmed/31649312
http://dx.doi.org/10.1038/s41598-019-51741-5
Descripción
Sumario:Although recent studies indicate that fluvial systems can be accumulation areas for microplastics (MPs), the common perception still treats rivers and streams primarily as pure transport vectors for MPs. In this study we investigate the occurrence of MPs in a yet unnoticed but essential compartment of fluvial ecosystems - the hyporheic zone (HZ). Larger MP particles (500–5,000 µm) were detected using attenuated total reflectance (ATR) - Fourier-transform infrared (FTIR) spectroscopy. Our analysis of MPs (500–5,000 µm) in five freeze cores extracted for the Roter Main River sediments (Germany) showed that MPs were detectable down to a depth of 0.6 m below the streambed in low abundances (≪1 particle per kg dry weight). Additionally, one core was analyzed as an example for smaller MPs (20–500 µm) with focal plane array (FPA)- based µFTIR spectroscopy. Highest MP abundances (~30,000 particles per kg dry weight) were measured for pore scale particles (20–50 µm). The detected high abundances indicate that the HZ can be a significant accumulation area for pore scale MPs (20–50 µm), a size fraction that yet is not considered in literature. As the HZ is known as an important habitat for invertebrates representing the base of riverine food webs, aquatic food webs can potentially be threatened by the presence of MPs in the HZ. Hyporheic exchange is discussed as a potential mechanism leading to a transfer of pore scale MPs from surface flow into streambed sediments and as a potential vector for small MPs to enter the local aquifer. MPs in the HZ therefore may be a potential risk for drinking water supplies, particularly during drinking water production via river bank filtration.