Cargando…
Predicting Materials Properties with Little Data Using Shotgun Transfer Learning
[Image: see text] There is a growing demand for the use of machine learning (ML) to derive fast-to-evaluate surrogate models of materials properties. In recent years, a broad array of materials property databases have emerged as part of a digital transformation of materials science. However, recent...
Autores principales: | Yamada, Hironao, Liu, Chang, Wu, Stephen, Koyama, Yukinori, Ju, Shenghong, Shiomi, Junichiro, Morikawa, Junko, Yoshida, Ryo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2019
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6813555/ https://www.ncbi.nlm.nih.gov/pubmed/31660440 http://dx.doi.org/10.1021/acscentsci.9b00804 |
Ejemplares similares
-
MDTS: automatic complex materials design using Monte Carlo tree search
por: M. Dieb, Thaer, et al.
Publicado: (2017) -
Multifunctional structural design of graphene thermoelectrics by Bayesian optimization
por: Yamawaki, Masaki, et al.
Publicado: (2018) -
Recreation of the periodic table with an unsupervised machine learning algorithm
por: Kusaba, Minoru, et al.
Publicado: (2021) -
Tuning phonon transport spectrum for better thermoelectric materials
por: Hori, Takuma, et al.
Publicado: (2018) -
iQSPR in XenonPy: A Bayesian Molecular Design Algorithm
por: Wu, Stephen, et al.
Publicado: (2019)