Cargando…
Intact extracellular matrix component promotes maintenance of liver-specific functions and larger aggregates formation of primary rat hepatocytes
The extracellular matrix (ECM) in a liver-specific extracellular matrix (L-ECM) scaffold facilitates hepatocyte viability and maintains hepatocyte functions in vitro. However, whether an intact composition of ECM is required for an efficient ECM-based substrate design remains to be clarified. In thi...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Japanese Society for Regenerative Medicine
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6813644/ https://www.ncbi.nlm.nih.gov/pubmed/31667205 http://dx.doi.org/10.1016/j.reth.2019.08.006 |
_version_ | 1783462879416025088 |
---|---|
author | Bual, Ronald P. Ijima, Hiroyuki |
author_facet | Bual, Ronald P. Ijima, Hiroyuki |
author_sort | Bual, Ronald P. |
collection | PubMed |
description | The extracellular matrix (ECM) in a liver-specific extracellular matrix (L-ECM) scaffold facilitates hepatocyte viability and maintains hepatocyte functions in vitro. However, whether an intact composition of ECM is required for an efficient ECM-based substrate design remains to be clarified. In this study, two L-ECM hydrogels, namely L-ECM I and L-ECM II, were prepared by pepsin solubilization at 4 °C and 25 °C, respectively. The solubility at 4 °C was 50% whereas that at 25 °C was 95%, thus indicating well-preserved L-ECM. Analysis confirmed higher ECM protein components (especially collagen) in L-ECM II, along with denser fiber network and larger fiber diameter. L-ECM II gel exhibited high compression strength and suitable viscoelastic properties. Furthermore, hepatocytes in L-ECM II showed higher expression of liver-specific functions in 3D culture and wider spread while maintaining the cell-cell contacts in 2D culture. Therefore, an intact L-ECM is important to realize effective substrates for liver tissue engineering. |
format | Online Article Text |
id | pubmed-6813644 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Japanese Society for Regenerative Medicine |
record_format | MEDLINE/PubMed |
spelling | pubmed-68136442019-10-30 Intact extracellular matrix component promotes maintenance of liver-specific functions and larger aggregates formation of primary rat hepatocytes Bual, Ronald P. Ijima, Hiroyuki Regen Ther Original Article The extracellular matrix (ECM) in a liver-specific extracellular matrix (L-ECM) scaffold facilitates hepatocyte viability and maintains hepatocyte functions in vitro. However, whether an intact composition of ECM is required for an efficient ECM-based substrate design remains to be clarified. In this study, two L-ECM hydrogels, namely L-ECM I and L-ECM II, were prepared by pepsin solubilization at 4 °C and 25 °C, respectively. The solubility at 4 °C was 50% whereas that at 25 °C was 95%, thus indicating well-preserved L-ECM. Analysis confirmed higher ECM protein components (especially collagen) in L-ECM II, along with denser fiber network and larger fiber diameter. L-ECM II gel exhibited high compression strength and suitable viscoelastic properties. Furthermore, hepatocytes in L-ECM II showed higher expression of liver-specific functions in 3D culture and wider spread while maintaining the cell-cell contacts in 2D culture. Therefore, an intact L-ECM is important to realize effective substrates for liver tissue engineering. Japanese Society for Regenerative Medicine 2019-09-17 /pmc/articles/PMC6813644/ /pubmed/31667205 http://dx.doi.org/10.1016/j.reth.2019.08.006 Text en © 2019 The Japanese Society for Regenerative Medicine. Production and hosting by Elsevier B.V. http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Original Article Bual, Ronald P. Ijima, Hiroyuki Intact extracellular matrix component promotes maintenance of liver-specific functions and larger aggregates formation of primary rat hepatocytes |
title | Intact extracellular matrix component promotes maintenance of liver-specific functions and larger aggregates formation of primary rat hepatocytes |
title_full | Intact extracellular matrix component promotes maintenance of liver-specific functions and larger aggregates formation of primary rat hepatocytes |
title_fullStr | Intact extracellular matrix component promotes maintenance of liver-specific functions and larger aggregates formation of primary rat hepatocytes |
title_full_unstemmed | Intact extracellular matrix component promotes maintenance of liver-specific functions and larger aggregates formation of primary rat hepatocytes |
title_short | Intact extracellular matrix component promotes maintenance of liver-specific functions and larger aggregates formation of primary rat hepatocytes |
title_sort | intact extracellular matrix component promotes maintenance of liver-specific functions and larger aggregates formation of primary rat hepatocytes |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6813644/ https://www.ncbi.nlm.nih.gov/pubmed/31667205 http://dx.doi.org/10.1016/j.reth.2019.08.006 |
work_keys_str_mv | AT bualronaldp intactextracellularmatrixcomponentpromotesmaintenanceofliverspecificfunctionsandlargeraggregatesformationofprimaryrathepatocytes AT ijimahiroyuki intactextracellularmatrixcomponentpromotesmaintenanceofliverspecificfunctionsandlargeraggregatesformationofprimaryrathepatocytes |