Cargando…

Genome-wide characterization of NtHD-ZIP IV: different roles in abiotic stress response and glandular Trichome induction

BACKGROUND: The plant-specific homeodomain-leucine zipper class IV (HD-ZIP IV) gene family has been involved in the regulation of epidermal development. RESULTS: Fifteen genes coding for HD-ZIP IV proteins were identified (NtHD-ZIP-IV-1 to NtHD-ZIP-IV-15) based on the genome of N. tabacum. Four majo...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Hongying, Ma, Xudong, Li, Wenjiao, Niu, Dexin, Wang, Zhaojun, Yan, Xiaoxiao, Yang, Xinling, Yang, Yongfeng, Cui, Hong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6814048/
https://www.ncbi.nlm.nih.gov/pubmed/31651252
http://dx.doi.org/10.1186/s12870-019-2023-4
Descripción
Sumario:BACKGROUND: The plant-specific homeodomain-leucine zipper class IV (HD-ZIP IV) gene family has been involved in the regulation of epidermal development. RESULTS: Fifteen genes coding for HD-ZIP IV proteins were identified (NtHD-ZIP-IV-1 to NtHD-ZIP-IV-15) based on the genome of N. tabacum. Four major domains (HD, ZIP, SAD and START) were present in these proteins. Tissue expression pattern analysis indicated that NtHD-ZIP-IV-1, − 2, − 3, − 10, and − 12 may be associated with trichome development; NtHD-ZIP-IV-8 was expressed only in cotyledons; NtHD-ZIP-IV-9 only in the leaf and stem epidermis; NtHD-ZIP-IV-11 only in leaves; and NtHD-ZIP-IV-15 only in the root and stem epidermis. We found that jasmonates may induce the generation of glandular trichomes, and that NtHD-ZIP-IV-1, − 2, − 5, and − 7 were response to MeJA treatment. Dynamic expression under abiotic stress and after application of phytohormones indicated that most NtHD-ZIP IV genes were induced by heat, cold, salt and drought. Furthermore, most of these genes were induced by gibberellic acid, 6-benzylaminopurine, and salicylic acid, but were inhibited by abscisic acid. NtHD-ZIP IV genes were sensitive to heat, but insensitive to osmotic stress. CONCLUSION: NtHD-ZIP IV genes are implicated in a complex regulatory gene network controlling epidermal development and abiotic stress responses. The present study provides evidence to elucidate the gene functions of NtHD-ZIP IVs during epidermal development and stress response.