Cargando…
Prediction of sgRNA on-target activity in bacteria by deep learning
BACKGROUND: One of the main challenges for the CRISPR-Cas9 system is selecting optimal single-guide RNAs (sgRNAs). Recently, deep learning has enhanced sgRNA prediction in eukaryotes. However, the prokaryotic chromatin structure is different from eukaryotes, so models trained on eukaryotes may not a...
Autores principales: | Wang, Lei, Zhang, Juhua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6814057/ https://www.ncbi.nlm.nih.gov/pubmed/31651233 http://dx.doi.org/10.1186/s12859-019-3151-4 |
Ejemplares similares
-
Deep learning improves the ability of sgRNA off-target propensity prediction
por: Liu, Qiaoyue, et al.
Publicado: (2020) -
EpiCas-DL: Predicting sgRNA activity for CRISPR-mediated epigenome editing by deep learning
por: Yang, Qianqian, et al.
Publicado: (2022) -
sgRNA-PSM: Predict sgRNAs On-Target Activity Based on Position-Specific Mismatch
por: Liu, Bin, et al.
Publicado: (2020) -
Improved sgRNA design in bacteria via genome-wide activity profiling
por: Guo, Jiahui, et al.
Publicado: (2018) -
CNN-XG: A Hybrid Framework for sgRNA On-Target Prediction
por: Li, Bohao, et al.
Publicado: (2022)